MARTINI_enrich_BERTopic_milliyetcitopluluk1

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_milliyetcitopluluk1")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 7
  • Number of training documents: 529
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 cumhuriyet - ataturk - ankara - yakalandı - gaziantep 21 -1_cumhuriyet_ataturk_ankara_yakalandı
0 erdogan - acıklama - bahceli - mehmet - mezarını 312 0_erdogan_acıklama_bahceli_mehmet
1 istanbul - kızın - bagcılar - kafasına - sokaklara 49 1_istanbul_kızın_bagcılar_kafasına
2 silahlı - hedefleri - pkk - oncupınar - terorist 48 2_silahlı_hedefleri_pkk_oncupınar
3 diyarbakır - harekatında - irak - operasyonlar - patlayıcının 39 3_diyarbakır_harekatında_irak_operasyonlar
4 aykırı - olmayacagını - savunacagız - mevzuatında - avukat 30 4_aykırı_olmayacagını_savunacagız_mevzuatında
5 azerbaycan - kazandırmak - silahlar - hareketleri - mayınlar 30 5_azerbaycan_kazandırmak_silahlar_hareketleri

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.