MARTINI_enrich_BERTopic_TheWellnessCompany

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_TheWellnessCompany")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 6
  • Number of training documents: 450
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 fauci - vaccinated - cancers - ivermectin - makis 21 -1_fauci_vaccinated_cancers_ivermectin
0 livestream - healthcare - supplements - tucker - amazing 228 0_livestream_healthcare_supplements_tucker
1 nattokinase - bromelain - spikesymposium - curcumin - supplement 87 1_nattokinase_bromelain_spikesymposium_curcumin
2 myocarditis - vaccinated - deaths - c19 - causally 69 2_myocarditis_vaccinated_deaths_c19
3 nattokinase - protease - fibrinolytic - neutralize - japan 23 3_nattokinase_protease_fibrinolytic_neutralize
4 cardiologists - suicide - prescribed - negligent - houston 22 4_cardiologists_suicide_prescribed_negligent

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.