MARTINI_enrich_BERTopic_QAnon17_Awakening

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_QAnon17_Awakening")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 7
  • Number of training documents: 468
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 soros - thepentagonpapers - ukraine - global - banned 25 -1_soros_thepentagonpapers_ukraine_global
0 fauci - vaccinated - clots - ivermectin - deadly 209 0_fauci_vaccinated_clots_ivermectin
1 432hz - illuminati - pyramids - frequencies - resonate 79 1_432hz_illuminati_pyramids_frequencies
2 republic - liberty - indivisible - flag - salvation 50 2_republic_liberty_indivisible_flag
3 hillary - kamala - leaked - epstein - videos 38 3_hillary_kamala_leaked_epstein
4 trump - raffle - 2500 - millionaire - bitcoin 36 4_trump_raffle_2500_millionaire
5 supplements - liver - antioxidants - detoxification - retina 31 5_supplements_liver_antioxidants_detoxification

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.