MARTINI_enrich_BERTopic_PAYorkshire

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_PAYorkshire")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 5
  • Number of training documents: 387
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 patrioticalternative - protest - wales - everybody - speeches 28 -1_patrioticalternative_protest_wales_everybody
0 migrants - britain - village - cottingham - centres 192 0_migrants_britain_village_cottingham
1 patrioticalternative - lancastrian - celebrated - whitby - supporters 70 1_patrioticalternative_lancastrian_celebrated_whitby
2 livestream - 7pm - paul - nationalist - white 52 2_livestream_7pm_paul_nationalist
3 patrioticalternative - sheffield - flyering - active - megaphone 45 3_patrioticalternative_sheffield_flyering_active

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.