MARTINI_enrich_BERTopic_MFKNews1

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_MFKNews1")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 4
  • Number of training documents: 539
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 bakanlıgı - cumhuriyet - mehmet - ataturk - azerbaycan 33 -1_bakanlıgı_cumhuriyet_mehmet_ataturk
0 harekatı - basbakanı - irak - bombalı - mersin 400 0_harekatı_basbakanı_irak_bombalı
1 fiyatları - bankası - dolar - uygulanacagını - milyon 63 1_fiyatları_bankası_dolar_uygulanacagını
2 partisi - sahsuvaroglu - patlatılmadıgı - diyarbakır - destekliyoruz 43 2_partisi_sahsuvaroglu_patlatılmadıgı_diyarbakır

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.