MARTINI_enrich_BERTopic_HarveyRisch

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_HarveyRisch")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 8
  • Number of training documents: 715
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 vaccinated - pfizer - deaths - misinformation - kennedy 28 -1_vaccinated_pfizer_deaths_misinformation
0 vaccinated - pfizer - antibodies - plasmid - injection 394 0_vaccinated_pfizer_antibodies_plasmid
1 vax - myocarditis - cordis - deaths - mri 75 1_vax_myocarditis_cordis_deaths
2 doctors - harvey - marik - integrative - webinar 74 2_doctors_harvey_marik_integrative
3 ivermectin - hydroxychloroquine - remdesivir - penicillin - prescribing 46 3_ivermectin_hydroxychloroquine_remdesivir_penicillin
4 unvaccinated - polio - children - allergies - cnbc 36 4_unvaccinated_polio_children_allergies
5 masks - omicron - hospitals - mandatory - texas 31 5_masks_omicron_hospitals_mandatory
6 fauci - wuhan - coronaviruses - bioweapons - conspired 31 6_fauci_wuhan_coronaviruses_bioweapons

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.