code block syntax highlighting

#16
by drHt - opened
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -75,7 +75,7 @@ so those that finish in *_0.fasta and *_1.fasta will be the best ones per batch.
75
  **Given that generation runs so fast, we recommend generating hundreds or thousands and then only picking the best 5% or less.
76
  With the script below, that would mean picking only those that finish in '_0.fasta'. Good perplexity values for this model so be below 1.75-1.5.**
77
 
78
- ```
79
  import torch
80
  from transformers import GPT2LMHeadModel, AutoTokenizer
81
  import os
@@ -179,7 +179,7 @@ We recommend using at least 200 sequences to obtain the best results. But we've
179
  that many, give it still a go.
180
 
181
 
182
- ```
183
  import random
184
  from transformers import AutoTokenizer
185
 
@@ -350,7 +350,7 @@ To do that, you can take the trainer file that we provide in this repository (5.
350
  The command below shows an example at an specific learning rate,
351
  but you could try with other hyperparameters to obtain the best training and evaluation losses.
352
 
353
- ```
354
  python 5.run_clm-post.py --tokenizer_name AI4PD/ZymCTRL
355
  --do_train --do_eval --output_dir output --eval_strategy steps --eval_steps 10
356
  --logging_steps 5 --save_steps 500 --num_train_epochs 28 --per_device_train_batch_size 1
 
75
  **Given that generation runs so fast, we recommend generating hundreds or thousands and then only picking the best 5% or less.
76
  With the script below, that would mean picking only those that finish in '_0.fasta'. Good perplexity values for this model so be below 1.75-1.5.**
77
 
78
+ ```python
79
  import torch
80
  from transformers import GPT2LMHeadModel, AutoTokenizer
81
  import os
 
179
  that many, give it still a go.
180
 
181
 
182
+ ```python
183
  import random
184
  from transformers import AutoTokenizer
185
 
 
350
  The command below shows an example at an specific learning rate,
351
  but you could try with other hyperparameters to obtain the best training and evaluation losses.
352
 
353
+ ```bash
354
  python 5.run_clm-post.py --tokenizer_name AI4PD/ZymCTRL
355
  --do_train --do_eval --output_dir output --eval_strategy steps --eval_steps 10
356
  --logging_steps 5 --save_steps 500 --num_train_epochs 28 --per_device_train_batch_size 1