Files changed (1) hide show
  1. README.md +72 -35
README.md CHANGED
@@ -4,41 +4,78 @@ tags:
4
  - alignment-handbook
5
  - generated_from_trainer
6
  widget:
7
- - example_title: Math problem
8
- messages:
9
- - role: user
10
- content: >-
11
- For how many values of the constant $k$ will the polynomial $x^{2}+kx+36$
12
- have two distinct integer roots?
13
- output:
14
- text: >-
15
- ### Solution: 1. For the polynomial \\( x^2 + kx + 36 \\) to have two
16
- distinct integer roots, let's denote these roots by \\( r_1 \\) and \\(
17
- r_2 \\).\n\n2. According to Vieta's formulas, the sum of the roots \\( r_1
18
- + r_2 \\) is equal to \\(-k\\), and the product of the roots \\( r_1
19
- \\cdot r_2 \\) is equal to 36.\n\n3. To find the distinct integer pairs
20
- \\((r_1, r_2)\\) whose product is 36, we need to determine all pairs of
21
- integers \\((r_1, r_2)\\) such that \\( r_1 \\cdot r_2 = 36 \\) and \\(
22
- r_1 \\neq r_2 \\).\n\n4. From the equation \\( r_1 + r_2 = -k \\), for
23
- each valid pair \\((r_1, r_2)\\), we can compute the corresponding value
24
- of \\( k \\).\n\n5. Finally, since we need the polynomial to have two
25
- distinct integer roots, we need to ensure that \\( r_1 \\) and \\( r_2 \\)
26
- are distinct.\n\nLet's start by finding all pairs \\((r_1, r_2)\\) such
27
- that \\( r_1 \\cdot r_2 = 36 \\). We'll then determine the values of \\( k
28
- \\) and ensure the roots are distinct.\n```python\nimport itertools\n\n#
29
- Find all pairs (r1, r2) such that r1 * r2 = 36\nproduct_36 =
30
- 36\nfactor_pairs = []\n\nfor i in range(1, product_36 + 1):\n if
31
- product_36 % i == 0:\n pair = (i, product_36 // i)\n if pair[0] !=
32
- pair[1]: # Ensure distinct pairs\n factor_pairs.append(pair)\n\n#
33
- Calculate k for each pair and ensure distinct integer
34
- roots\nvalid_k_values = set()\nfor r1, r2 in factor_pairs:\n if r1 !=
35
- r2:\n k = -(r1 + r2)\n
36
- valid_k_values.add(k)\n\nprint((len(valid_k_values),
37
- sorted(valid_k_values)))\n```\n```output\n(4, [-37, -20, -15,
38
- -13])\n```\nThe distinct integer values of \\( k \\) that make the
39
- polynomial \\( x^2 + kx + 36 \\) have two distinct integer roots are
40
- \\(-37, -20, -15, \\text{and} -13\\).\n\nTherefore, the number of such
41
- values of \\( k \\) is:\n\n\\[\n\\boxed{4}\n\\]\n
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  pipeline_tag: text-generation
43
  model-index:
44
  - name: NuminaMath-7B-TIR
 
4
  - alignment-handbook
5
  - generated_from_trainer
6
  widget:
7
+ - example_title: Math problem
8
+ messages:
9
+ - role: user
10
+ content: >-
11
+ For how many values of the constant $k$ will the polynomial
12
+ $x^{2}+kx+36$ have two distinct integer roots?
13
+ output:
14
+ text: >-
15
+ ### Solution:
16
+
17
+ 1- For the polynomial \\( x^2 + kx + 36 \\) to have two
18
+ distinct integer roots, let's denote these roots by \\( r_1 \\) and \\(
19
+ r_2 \\).
20
+
21
+
22
+
23
+ 2- According to Vieta's formulas, the sum of the roots \\( r_1 + r_2 \\)
24
+ is equal to \\(-k\\), and the product of the roots \\( r_1 \\cdot r_2
25
+ \\) is equal to 36.
26
+
27
+
28
+
29
+ 3- To find the distinct integer pairs \\((r_1, r_2)\\) whose product is
30
+ 36, we need to determine all pairs of integers \\((r_1, r_2)\\) such
31
+ that \\( r_1 \\cdot r_2 = 36 \\) and \\( r_1 \\neq r_2 \\).
32
+
33
+
34
+
35
+ 4- From the equation \\( r_1 + r_2 = -k \\), for each valid pair
36
+ \\((r_1, r_2)\\), we can compute the corresponding value of \\( k \\).
37
+
38
+
39
+
40
+ 5- Finally, since we need the polynomial to have two distinct integer
41
+ roots, we need to ensure that \\( r_1 \\) and \\( r_2 \\) are distinct.
42
+
43
+ Let's start by finding all pairs \\((r_1, r_2)\\) such that \\( r_1
44
+ \\cdot r_2 = 36 \\). We'll then determine the values of \\( k \\) and
45
+ ensure the roots are distinct.
46
+
47
+ ```python import itertools
48
+
49
+ # Find all pairs (r1, r2) such that r1 * r2 = 36 product_36 = 36
50
+ factor_pairs = []
51
+
52
+ for i in range(1, product_36 + 1):
53
+ if product_36 % i == 0:
54
+ pair = (i, product_36 // i)
55
+ if pair[0] != pair[1]: # Ensure distinct pairs
56
+ factor_pairs.append(pair)
57
+
58
+ # Calculate k for each pair and ensure distinct integer roots
59
+ valid_k_values = set()
60
+ for r1, r2 in factor_pairs:
61
+ if r1 != r2:
62
+ k = -(r1 + r2)
63
+ valid_k_values.add(k)
64
+
65
+ print((len(valid_k_values), sorted(valid_k_values)))
66
+ ```
67
+
68
+ ```output
69
+ (4, [-37, -20, -15,-13])
70
+ ```
71
+ The distinct integer values of \\( k \\) that make the
72
+ polynomial \\( x^2 + kx + 36 \\) have two distinct integer roots are
73
+ \\(-37, -20, -15, \\text{and} -13\\).
74
+
75
+ Therefore, the number of such values of \\( k \\) is:
76
+
77
+ [ \\boxed{4} \\]
78
+
79
  pipeline_tag: text-generation
80
  model-index:
81
  - name: NuminaMath-7B-TIR