Improve widget example
#2
by
osanseviero
- opened
README.md
CHANGED
@@ -4,41 +4,78 @@ tags:
|
|
4 |
- alignment-handbook
|
5 |
- generated_from_trainer
|
6 |
widget:
|
7 |
-
- example_title: Math problem
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
pipeline_tag: text-generation
|
43 |
model-index:
|
44 |
- name: NuminaMath-7B-TIR
|
|
|
4 |
- alignment-handbook
|
5 |
- generated_from_trainer
|
6 |
widget:
|
7 |
+
- example_title: Math problem
|
8 |
+
messages:
|
9 |
+
- role: user
|
10 |
+
content: >-
|
11 |
+
For how many values of the constant $k$ will the polynomial
|
12 |
+
$x^{2}+kx+36$ have two distinct integer roots?
|
13 |
+
output:
|
14 |
+
text: >-
|
15 |
+
### Solution:
|
16 |
+
|
17 |
+
1- For the polynomial \\( x^2 + kx + 36 \\) to have two
|
18 |
+
distinct integer roots, let's denote these roots by \\( r_1 \\) and \\(
|
19 |
+
r_2 \\).
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
2- According to Vieta's formulas, the sum of the roots \\( r_1 + r_2 \\)
|
24 |
+
is equal to \\(-k\\), and the product of the roots \\( r_1 \\cdot r_2
|
25 |
+
\\) is equal to 36.
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
3- To find the distinct integer pairs \\((r_1, r_2)\\) whose product is
|
30 |
+
36, we need to determine all pairs of integers \\((r_1, r_2)\\) such
|
31 |
+
that \\( r_1 \\cdot r_2 = 36 \\) and \\( r_1 \\neq r_2 \\).
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
4- From the equation \\( r_1 + r_2 = -k \\), for each valid pair
|
36 |
+
\\((r_1, r_2)\\), we can compute the corresponding value of \\( k \\).
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
5- Finally, since we need the polynomial to have two distinct integer
|
41 |
+
roots, we need to ensure that \\( r_1 \\) and \\( r_2 \\) are distinct.
|
42 |
+
|
43 |
+
Let's start by finding all pairs \\((r_1, r_2)\\) such that \\( r_1
|
44 |
+
\\cdot r_2 = 36 \\). We'll then determine the values of \\( k \\) and
|
45 |
+
ensure the roots are distinct.
|
46 |
+
|
47 |
+
```python import itertools
|
48 |
+
|
49 |
+
# Find all pairs (r1, r2) such that r1 * r2 = 36 product_36 = 36
|
50 |
+
factor_pairs = []
|
51 |
+
|
52 |
+
for i in range(1, product_36 + 1):
|
53 |
+
if product_36 % i == 0:
|
54 |
+
pair = (i, product_36 // i)
|
55 |
+
if pair[0] != pair[1]: # Ensure distinct pairs
|
56 |
+
factor_pairs.append(pair)
|
57 |
+
|
58 |
+
# Calculate k for each pair and ensure distinct integer roots
|
59 |
+
valid_k_values = set()
|
60 |
+
for r1, r2 in factor_pairs:
|
61 |
+
if r1 != r2:
|
62 |
+
k = -(r1 + r2)
|
63 |
+
valid_k_values.add(k)
|
64 |
+
|
65 |
+
print((len(valid_k_values), sorted(valid_k_values)))
|
66 |
+
```
|
67 |
+
|
68 |
+
```output
|
69 |
+
(4, [-37, -20, -15,-13])
|
70 |
+
```
|
71 |
+
The distinct integer values of \\( k \\) that make the
|
72 |
+
polynomial \\( x^2 + kx + 36 \\) have two distinct integer roots are
|
73 |
+
\\(-37, -20, -15, \\text{and} -13\\).
|
74 |
+
|
75 |
+
Therefore, the number of such values of \\( k \\) is:
|
76 |
+
|
77 |
+
[ \\boxed{4} \\]
|
78 |
+
|
79 |
pipeline_tag: text-generation
|
80 |
model-index:
|
81 |
- name: NuminaMath-7B-TIR
|