experiments
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6596
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7073 | 0.4162 | 50 | 1.5993 |
1.4004 | 0.8325 | 100 | 1.4527 |
1.3051 | 1.2487 | 150 | 1.4122 |
1.2396 | 1.6649 | 200 | 1.3871 |
1.2044 | 2.0812 | 250 | 1.3906 |
1.1019 | 2.4974 | 300 | 1.3775 |
1.2682 | 2.9136 | 350 | 1.3649 |
1.1681 | 3.3299 | 400 | 1.4233 |
1.1343 | 3.7461 | 450 | 1.4160 |
0.7987 | 4.1623 | 500 | 1.4964 |
0.8663 | 4.5786 | 550 | 1.5011 |
0.7473 | 4.9948 | 600 | 1.4845 |
0.7386 | 5.4110 | 650 | 1.5706 |
0.61 | 5.8273 | 700 | 1.5695 |
0.4689 | 6.2435 | 750 | 1.6596 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 1.13.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for AI-4-Health/HPP-finetuned-Meta-Llama-3-8B-Instruct
Base model
meta-llama/Meta-Llama-3-8B-Instruct