ko-42maru-wav2vec2-conformer-del-1s

Table of Contents

Model Details

  • Model Description: ํ•ด๋‹น ๋ชจ๋ธ์€ wav2vec2-conformer base architecture์— scratch pre-training ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
    Wav2Vec2ConformerForCTC๋ฅผ ์ด์šฉํ•˜์—ฌ KsponSpeech์— ๋Œ€ํ•œ Fine-Tuning ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.

  • Dataset use AIHub KsponSpeech
    Datasets๋Š” ํ•ด๋‹น Data๋ฅผ ์ „์ฒ˜๋ฆฌํ•˜์—ฌ ์ž„์˜๋กœ ๋งŒ๋“ค์–ด ์‚ฌ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค.
    del-1s์˜ ์˜๋ฏธ๋Š” 1์ดˆ ์ดํ•˜์˜ ๋ฐ์ดํ„ฐ ํ•„ํ„ฐ๋ง์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.
    ํ•ด๋‹น ๋ชจ๋ธ์€ ์Œ์„ฑ์ „์‚ฌ๋ฅผ ์ž์ฒด ์ปค์Šคํ…€ํ•œ 42maru ๊ธฐ์ค€์˜ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต๋œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. (์ˆซ์ž์™€ ์˜์–ด๋Š” ํ•œ๊ธ€ ํ‘œ๊ธฐ๋ฒ•์„ ๋”ฐ๋ฆ„)

  • Developed by: TADev (@lIlBrother, @ddobokki, @jp42maru)

  • Language(s): Korean

  • License: apache-2.0

  • Parent Model: See the wav2vec2-conformer for more information about the pre-trained base model. (ํ•ด๋‹น ๋ชจ๋ธ์€ wav2vec2-conformer base architecture์— scratch pre-training ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.)

Evaluation

Just using load_metric("wer") and load_metric("wer") in huggingface datasets library

How to Get Started With the Model

KenLM๊ณผ ํ˜ผ์šฉ๋œ Wav2Vec2ProcessorWithLM ์˜ˆ์ œ๋ฅผ ๋ณด์‹œ๋ ค๋ฉด 42maru-kenlm ์˜ˆ์ œ๋ฅผ ์ฐธ๊ณ ํ•˜์„ธ์š”

import librosa
from pyctcdecode import build_ctcdecoder
from transformers import (
    AutoConfig,
    AutoFeatureExtractor,
    AutoModelForCTC,
    AutoTokenizer,
    Wav2Vec2ProcessorWithLM,
)
from transformers.pipelines import AutomaticSpeechRecognitionPipeline

audio_path = ""

# ๋ชจ๋ธ๊ณผ ํ† ํฌ๋‚˜์ด์ €, ์˜ˆ์ธก์„ ์œ„ํ•œ ๊ฐ ๋ชจ๋“ˆ๋“ค์„ ๋ถˆ๋Ÿฌ์˜ต๋‹ˆ๋‹ค.
model = AutoModelForCTC.from_pretrained("42MARU/ko-42maru-wav2vec2-conformer-del-1s")
feature_extractor = AutoFeatureExtractor.from_pretrained("42MARU/ko-42maru-wav2vec2-conformer-del-1s")
tokenizer = AutoTokenizer.from_pretrained("42MARU/ko-42maru-wav2vec2-conformer-del-1s")
beamsearch_decoder = build_ctcdecoder(
    labels=list(tokenizer.encoder.keys()),
    kenlm_model_path=None,
)
processor = Wav2Vec2ProcessorWithLM(
    feature_extractor=feature_extractor, tokenizer=tokenizer, decoder=beamsearch_decoder
)

# ์‹ค์ œ ์˜ˆ์ธก์„ ์œ„ํ•œ ํŒŒ์ดํ”„๋ผ์ธ์— ์ •์˜๋œ ๋ชจ๋“ˆ๋“ค์„ ์‚ฝ์ž….
asr_pipeline = AutomaticSpeechRecognitionPipeline(
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    decoder=processor.decoder,
    device=-1,
)

# ์Œ์„ฑํŒŒ์ผ์„ ๋ถˆ๋Ÿฌ์˜ค๊ณ  beamsearch ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ํŠน์ •ํ•˜์—ฌ ์˜ˆ์ธก์„ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.
raw_data, _ = librosa.load(audio_path, sr=16000)
kwargs = {"decoder_kwargs": {"beam_width": 100}}
pred = asr_pipeline(inputs=raw_data, **kwargs)["text"]
# ๋ชจ๋ธ์ด ์ž์†Œ ๋ถ„๋ฆฌ ์œ ๋‹ˆ์ฝ”๋“œ ํ…์ŠคํŠธ๋กœ ๋‚˜์˜ค๋ฏ€๋กœ, ์ผ๋ฐ˜ String์œผ๋กœ ๋ณ€ํ™˜ํ•ด์ค„ ํ•„์š”๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
result = unicodedata.normalize("NFC", pred)
print(result)
# ์•ˆ๋…•ํ•˜์„ธ์š” ํ•˜๋‚˜๋‘˜์…‹ ํ…Œ์ŠคํŠธ์ž…๋‹ˆ๋‹ค.

Beam-100 Result (WER):

"clean" "other"
21.52 25.72
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.