fined-tune-thai-sentiment

This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2795
  • Accuracy: 0.8892
  • F1-score: 0.8674
  • Precision: 0.8494
  • Recall: 0.8892

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 331
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1-score Precision Recall
0.4565 1.0 111 0.4314 0.8338 0.8035 0.7861 0.8338
0.3959 2.0 222 0.2795 0.8892 0.8674 0.8494 0.8892
0.3051 3.0 333 0.3507 0.9129 0.8957 0.9154 0.9129
0.3276 4.0 444 0.3631 0.9050 0.8900 0.9050 0.9050
0.1528 5.0 555 0.5094 0.9077 0.8957 0.9057 0.9077
0.093 6.0 666 0.3182 0.9103 0.9082 0.9071 0.9103
0.0885 7.0 777 0.4344 0.9156 0.9119 0.9149 0.9156
0.0815 8.0 888 0.4568 0.9261 0.9204 0.9238 0.9261
0.0262 9.0 999 0.4420 0.9314 0.9272 0.9289 0.9314
0.0254 10.0 1110 0.4467 0.9314 0.9262 0.9287 0.9314

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
32
Safetensors
Model size
105M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for 3728km/fined-tune-thai-sentiment

Finetuned
(30)
this model