ep9io's picture
Update README.md
105b70d verified
|
raw
history blame
23.1 kB
---
base_model: google/gemma-2-9b
datasets:
- 2024-mcm-everitt-ryan/job-bias-synthetic-human-benchmark-v2
language: en
license: apache-2.0
model_id: gemma-2-9b-job-bias-qlora-seq-cls
model_description: The model is a multi-label classifier designed to detect various
types of bias within job descriptions.
developers: Tristan Everitt and Paul Ryan
model_card_authors: See developers
model_card_contact: See developers
repo: https://gitlab.computing.dcu.ie/everitt2/2024-mcm-everitt-ryan
training_regime: 'accelerator_config="{''split_batches'': False, ''dispatch_batches'':
None, ''even_batches'': True, ''use_seedable_sampler'': True, ''non_blocking'':
False, ''gradient_accumulation_kwargs'': None}", adafactor=false, adam_beta1=0.9,
adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=false, batch_eval_metrics=false,
bf16=false, bf16_full_eval=false, data_seed="None", dataloader_drop_last=false,
dataloader_num_workers=0, dataloader_persistent_workers=false, dataloader_pin_memory=true,
dataloader_prefetch_factor="None", ddp_backend="None", ddp_broadcast_buffers="None",
ddp_bucket_cap_mb="None", ddp_find_unused_parameters="None", ddp_timeout=1800, deepspeed="None",
disable_tqdm=false, dispatch_batches="None", do_eval=true, do_predict=false, do_train=false,
eval_accumulation_steps="None", eval_batch_size=8, eval_delay=0, eval_do_concat_batches=true,
eval_on_start=false, eval_steps="None", eval_strategy="epoch", evaluation_strategy="None",
fp16=false, fp16_backend="auto", fp16_full_eval=false, fp16_opt_level="O1", fsdp="[]",
fsdp_config="{''min_num_params'': 0, ''xla'': False, ''xla_fsdp_v2'': False, ''xla_fsdp_grad_ckpt'':
False}", fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap="None", full_determinism=false,
gradient_accumulation_steps=1, gradient_checkpointing="(False,)", gradient_checkpointing_kwargs="None",
greater_is_better=false, group_by_length=true, half_precision_backend="auto", ignore_data_skip=false,
include_inputs_for_metrics=false, jit_mode_eval=false, label_names="None", label_smoothing_factor=0.0,
learning_rate=0.0001, length_column_name="length", load_best_model_at_end=true,
local_rank=0, lr_scheduler_kwargs="{}", lr_scheduler_type="linear", max_grad_norm=1.0,
max_steps=-1, metric_for_best_model="loss", mp_parameters="", neftune_noise_alpha="None",
no_cuda=false, num_train_epochs=3, optim="adamw_torch", optim_args="None", optim_target_modules="None",
past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=8, per_gpu_eval_batch_size="None",
per_gpu_train_batch_size="None", prediction_loss_only=false, ray_scope="last", remove_unused_columns=true,
report_to="[]", restore_callback_states_from_checkpoint=false, resume_from_checkpoint="None",
seed=42, skip_memory_metrics=true, split_batches="None", tf32="None", torch_compile=false,
torch_compile_backend="None", torch_compile_mode="None", torchdynamo="None", tpu_num_cores="None",
train_batch_size=8, use_cpu=false, use_ipex=false, use_legacy_prediction_loop=false,
use_mps_device=false, warmup_ratio=0.0, warmup_steps=0, weight_decay=0.001'
results: " precision recall f1-score support\n \n \
\ age 0.72 0.60 0.65 80\n disability 0.95\
\ 0.50 0.66 80\n feminine 0.99 0.91 0.95\
\ 80\n general 0.84 0.46 0.60 80\n masculine\
\ 0.65 0.66 0.66 80\n neutral 0.34 0.86\
\ 0.49 80\n racial 0.90 0.82 0.86 80\n\
\ sexuality 0.97 0.75 0.85 80\n \n micro avg\
\ 0.69 0.70 0.69 640\n macro avg 0.80 0.70\
\ 0.71 640\n weighted avg 0.80 0.70 0.71 640\n\
\ samples avg 0.71 0.74 0.72 640\n "
compute_infrastructure: '- Linux 6.5.0-28-generic x86_64
- MemTotal: 527988292 kB
- 64 X Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
- GPU_0: NVIDIA L40S'
software: python 3.10.12, accelerate 0.32.1, aiohttp 3.9.5, aiosignal 1.3.1, anyio
4.2.0, argon2-cffi 23.1.0, argon2-cffi-bindings 21.2.0, arrow 1.3.0, asttokens 2.4.1,
async-lru 2.0.4, async-timeout 4.0.3, attrs 23.2.0, awscli 1.33.26, Babel 2.14.0,
beautifulsoup4 4.12.3, bitsandbytes 0.43.1, bleach 6.1.0, blinker 1.4, botocore
1.34.144, certifi 2024.2.2, cffi 1.16.0, charset-normalizer 3.3.2, click 8.1.7,
cloudpickle 3.0.0, colorama 0.4.6, comm 0.2.1, cryptography 3.4.8, dask 2024.7.0,
datasets 2.20.0, dbus-python 1.2.18, debugpy 1.8.0, decorator 5.1.1, defusedxml
0.7.1, dill 0.3.8, distro 1.7.0, docutils 0.16, einops 0.8.0, entrypoints 0.4, evaluate
0.4.2, exceptiongroup 1.2.0, executing 2.0.1, fastjsonschema 2.19.1, filelock 3.13.1,
flash-attn 2.6.1, fqdn 1.5.1, frozenlist 1.4.1, fsspec 2024.2.0, h11 0.14.0, hf_transfer
0.1.6, httpcore 1.0.2, httplib2 0.20.2, httpx 0.26.0, huggingface-hub 0.23.4, idna
3.6, importlib_metadata 8.0.0, iniconfig 2.0.0, ipykernel 6.29.0, ipython 8.21.0,
ipython-genutils 0.2.0, ipywidgets 8.1.1, isoduration 20.11.0, jedi 0.19.1, jeepney
0.7.1, Jinja2 3.1.3, jmespath 1.0.1, joblib 1.4.2, json5 0.9.14, jsonpointer 2.4,
jsonschema 4.21.1, jsonschema-specifications 2023.12.1, jupyter-archive 3.4.0, jupyter_client
7.4.9, jupyter_contrib_core 0.4.2, jupyter_contrib_nbextensions 0.7.0, jupyter_core
5.7.1, jupyter-events 0.9.0, jupyter-highlight-selected-word 0.2.0, jupyter-lsp
2.2.2, jupyter-nbextensions-configurator 0.6.3, jupyter_server 2.12.5, jupyter_server_terminals
0.5.2, jupyterlab 4.1.0, jupyterlab_pygments 0.3.0, jupyterlab_server 2.25.2, jupyterlab-widgets
3.0.9, keyring 23.5.0, launchpadlib 1.10.16, lazr.restfulclient 0.14.4, lazr.uri
1.0.6, locket 1.0.0, lxml 5.1.0, MarkupSafe 2.1.5, matplotlib-inline 0.1.6, mistune
3.0.2, more-itertools 8.10.0, mpmath 1.3.0, multidict 6.0.5, multiprocess 0.70.16,
nbclassic 1.0.0, nbclient 0.9.0, nbconvert 7.14.2, nbformat 5.9.2, nest-asyncio
1.6.0, networkx 3.2.1, nltk 3.8.1, notebook 6.5.5, notebook_shim 0.2.3, numpy 1.26.3,
nvidia-cublas-cu12 12.1.3.1, nvidia-cuda-cupti-cu12 12.1.105, nvidia-cuda-nvrtc-cu12
12.1.105, nvidia-cuda-runtime-cu12 12.1.105, nvidia-cudnn-cu12 8.9.2.26, nvidia-cufft-cu12
11.0.2.54, nvidia-curand-cu12 10.3.2.106, nvidia-cusolver-cu12 11.4.5.107, nvidia-cusparse-cu12
12.1.0.106, nvidia-nccl-cu12 2.19.3, nvidia-nvjitlink-cu12 12.3.101, nvidia-nvtx-cu12
12.1.105, oauthlib 3.2.0, overrides 7.7.0, packaging 23.2, pandas 2.2.2, pandocfilters
1.5.1, parso 0.8.3, partd 1.4.2, peft 0.11.1, pexpect 4.9.0, pillow 10.2.0, pip
24.1.2, platformdirs 4.2.0, pluggy 1.5.0, polars 1.1.0, prometheus-client 0.19.0,
prompt-toolkit 3.0.43, protobuf 5.27.2, psutil 5.9.8, ptyprocess 0.7.0, pure-eval
0.2.2, pyarrow 16.1.0, pyarrow-hotfix 0.6, pyasn1 0.6.0, pycparser 2.21, Pygments
2.17.2, PyGObject 3.42.1, PyJWT 2.3.0, pyparsing 2.4.7, pytest 8.2.2, python-apt
2.4.0+ubuntu3, python-dateutil 2.8.2, python-json-logger 2.0.7, pytz 2024.1, PyYAML
6.0.1, pyzmq 24.0.1, referencing 0.33.0, regex 2024.5.15, requests 2.32.3, rfc3339-validator
0.1.4, rfc3986-validator 0.1.1, rpds-py 0.17.1, rsa 4.7.2, s3transfer 0.10.2, safetensors
0.4.3, scikit-learn 1.5.1, scipy 1.14.0, SecretStorage 3.3.1, Send2Trash 1.8.2,
sentence-transformers 3.0.1, sentencepiece 0.2.0, setuptools 69.0.3, six 1.16.0,
sniffio 1.3.0, soupsieve 2.5, stack-data 0.6.3, sympy 1.12, tabulate 0.9.0, terminado
0.18.0, threadpoolctl 3.5.0, tiktoken 0.7.0, tinycss2 1.2.1, tokenizers 0.19.1,
tomli 2.0.1, toolz 0.12.1, torch 2.2.0, torchaudio 2.2.0, torchdata 0.7.1, torchtext
0.17.0, torchvision 0.17.0, tornado 6.4, tqdm 4.66.4, traitlets 5.14.1, transformers
4.42.4, triton 2.2.0, types-python-dateutil 2.8.19.20240106, typing_extensions 4.9.0,
tzdata 2024.1, uri-template 1.3.0, urllib3 2.2.2, wadllib 1.3.6, wcwidth 0.2.13,
webcolors 1.13, webencodings 0.5.1, websocket-client 1.7.0, wheel 0.42.0, widgetsnbextension
4.0.9, xxhash 3.4.1, yarl 1.9.4, zipp 1.0.0
hardware_type: 1 X NVIDIA L40S
hours_used: '4.18'
cloud_provider: N/A
cloud_region: N/A
co2_emitted: N/A
direct_use: "\n ```python\n from transformers import pipeline\n\n pipe =\
\ pipeline(\"text-classification\", model=\"2024-mcm-everitt-ryan/gemma-2-9b-job-bias-qlora-seq-cls\"\
, return_all_scores=True)\n\n results = pipe(\"Join our dynamic and fast-paced\
\ team as a Junior Marketing Specialist. We seek a tech-savvy and energetic individual\
\ who thrives in a vibrant environment. Ideal candidates are digital natives with\
\ a fresh perspective, ready to adapt quickly to new trends. You should have recent\
\ experience in social media strategies and a strong understanding of current digital\
\ marketing tools. We're looking for someone with a youthful mindset, eager to bring\
\ innovative ideas to our young and ambitious team. If you're a recent graduate\
\ or early in your career, this opportunity is perfect for you!\")\n print(results)\n\
\ ```\n >> [[\n {'label': 'age', 'score': 0.9883460402488708}, \n {'label':\
\ 'disability', 'score': 0.00787709467113018}, \n {'label': 'feminine', 'score':\
\ 0.007224376779049635}, \n {'label': 'general', 'score': 0.09967829287052155},\
\ \n {'label': 'masculine', 'score': 0.0035264550242573023}, \n {'label':\
\ 'racial', 'score': 0.014618005603551865}, \n {'label': 'sexuality', 'score':\
\ 0.005568435415625572}\n ]]\n "
model-index:
- name: gemma-2-9b-job-bias-qlora-seq-cls
results:
- task:
type: multi_label_classification
dataset:
name: 2024-mcm-everitt-ryan/job-bias-synthetic-human-benchmark-v2
type: mix_human-eval_synthetic
metrics:
- type: loss
value: 0.2838529944419861
- type: accuracy
value: 0.6438356164383562
- type: f1_micro
value: 0.6947040498442367
- type: precision_micro
value: 0.6925465838509317
- type: recall_micro
value: 0.696875
- type: roc_auc_micro
value: 0.8238839285714286
- type: f1_macro
value: 0.7138661109496585
- type: precision_macro
value: 0.7957063168116414
- type: recall_macro
value: 0.6968749999999999
- type: roc_auc_macro
value: 0.8238839285714286
- type: f1_samples
value: 0.7163078930202218
- type: precision_samples
value: 0.7057648401826483
- type: recall_samples
value: 0.7441495433789955
- type: roc_auc_samples
value: 0.8469646934116113
- type: f1_weighted
value: 0.7138661109496585
- type: precision_weighted
value: 0.7957063168116415
- type: recall_weighted
value: 0.696875
- type: roc_auc_weighted
value: 0.8238839285714284
- type: runtime
value: 251.9003
- type: samples_per_second
value: 2.318
- type: steps_per_second
value: 0.29
- type: epoch
value: 3.0
---
# Model Card for gemma-2-9b-job-bias-qlora-seq-cls
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
The model is a multi-label classifier designed to detect various types of bias within job descriptions.
- **Developed by:** Tristan Everitt and Paul Ryan
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** en
- **License:** apache-2.0
- **Finetuned from model [optional]:** google/gemma-2-9b
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** https://gitlab.computing.dcu.ie/everitt2/2024-mcm-everitt-ryan
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
```python
from transformers import pipeline
pipe = pipeline("text-classification", model="2024-mcm-everitt-ryan/gemma-2-9b-job-bias-qlora-seq-cls", return_all_scores=True)
results = pipe("Join our dynamic and fast-paced team as a Junior Marketing Specialist. We seek a tech-savvy and energetic individual who thrives in a vibrant environment. Ideal candidates are digital natives with a fresh perspective, ready to adapt quickly to new trends. You should have recent experience in social media strategies and a strong understanding of current digital marketing tools. We're looking for someone with a youthful mindset, eager to bring innovative ideas to our young and ambitious team. If you're a recent graduate or early in your career, this opportunity is perfect for you!")
print(results)
```
>> [[
{'label': 'age', 'score': 0.9883460402488708},
{'label': 'disability', 'score': 0.00787709467113018},
{'label': 'feminine', 'score': 0.007224376779049635},
{'label': 'general', 'score': 0.09967829287052155},
{'label': 'masculine', 'score': 0.0035264550242573023},
{'label': 'racial', 'score': 0.014618005603551865},
{'label': 'sexuality', 'score': 0.005568435415625572}
]]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
- [2024-mcm-everitt-ryan/benchmark](https://huggingface.co/datasets/2024-mcm-everitt-ryan/benchmark)
#### Training Hyperparameters
accelerator_config="{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}", adafactor=false, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=false, batch_eval_metrics=false, bf16=false, bf16_full_eval=false, data_seed="None", dataloader_drop_last=false, dataloader_num_workers=0, dataloader_persistent_workers=false, dataloader_pin_memory=true, dataloader_prefetch_factor="None", ddp_backend="None", ddp_broadcast_buffers="None", ddp_bucket_cap_mb="None", ddp_find_unused_parameters="None", ddp_timeout=1800, deepspeed="None", disable_tqdm=false, dispatch_batches="None", do_eval=true, do_predict=false, do_train=false, eval_accumulation_steps="None", eval_batch_size=8, eval_delay=0, eval_do_concat_batches=true, eval_on_start=false, eval_steps="None", eval_strategy="epoch", evaluation_strategy="None", fp16=false, fp16_backend="auto", fp16_full_eval=false, fp16_opt_level="O1", fsdp="[]", fsdp_config="{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}", fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap="None", full_determinism=false, gradient_accumulation_steps=1, gradient_checkpointing="(False,)", gradient_checkpointing_kwargs="None", greater_is_better=false, group_by_length=true, half_precision_backend="auto", ignore_data_skip=false, include_inputs_for_metrics=false, jit_mode_eval=false, label_names="None", label_smoothing_factor=0.0, learning_rate=0.0001, length_column_name="length", load_best_model_at_end=true, local_rank=0, lr_scheduler_kwargs="{}", lr_scheduler_type="linear", max_grad_norm=1.0, max_steps=-1, metric_for_best_model="loss", mp_parameters="", neftune_noise_alpha="None", no_cuda=false, num_train_epochs=3, optim="adamw_torch", optim_args="None", optim_target_modules="None", past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=8, per_gpu_eval_batch_size="None", per_gpu_train_batch_size="None", prediction_loss_only=false, ray_scope="last", remove_unused_columns=true, report_to="[]", restore_callback_states_from_checkpoint=false, resume_from_checkpoint="None", seed=42, skip_memory_metrics=true, split_batches="None", tf32="None", torch_compile=false, torch_compile_backend="None", torch_compile_mode="None", torchdynamo="None", tpu_num_cores="None", train_batch_size=8, use_cpu=false, use_ipex=false, use_legacy_prediction_loop=false, use_mps_device=false, warmup_ratio=0.0, warmup_steps=0, weight_decay=0.001 <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
## Results
precision recall f1-score support
age 0.72 0.60 0.65 80
disability 0.95 0.50 0.66 80
feminine 0.99 0.91 0.95 80
general 0.84 0.46 0.60 80
masculine 0.65 0.66 0.66 80
neutral 0.34 0.86 0.49 80
racial 0.90 0.82 0.86 80
sexuality 0.97 0.75 0.85 80
micro avg 0.69 0.70 0.69 640
macro avg 0.80 0.70 0.71 640
weighted avg 0.80 0.70 0.71 640
samples avg 0.71 0.74 0.72 640
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** 1 X NVIDIA L40S
- **Hours used:** 4.18
- **Cloud Provider:** N/A
- **Compute Region:** N/A
- **Carbon Emitted:** N/A
### Compute Infrastructure
- Linux 6.5.0-28-generic x86_64
- MemTotal: 527988292 kB
- 64 X Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
- GPU_0: NVIDIA L40S
#### Software
python 3.10.12, accelerate 0.32.1, aiohttp 3.9.5, aiosignal 1.3.1, anyio 4.2.0, argon2-cffi 23.1.0, argon2-cffi-bindings 21.2.0, arrow 1.3.0, asttokens 2.4.1, async-lru 2.0.4, async-timeout 4.0.3, attrs 23.2.0, awscli 1.33.26, Babel 2.14.0, beautifulsoup4 4.12.3, bitsandbytes 0.43.1, bleach 6.1.0, blinker 1.4, botocore 1.34.144, certifi 2024.2.2, cffi 1.16.0, charset-normalizer 3.3.2, click 8.1.7, cloudpickle 3.0.0, colorama 0.4.6, comm 0.2.1, cryptography 3.4.8, dask 2024.7.0, datasets 2.20.0, dbus-python 1.2.18, debugpy 1.8.0, decorator 5.1.1, defusedxml 0.7.1, dill 0.3.8, distro 1.7.0, docutils 0.16, einops 0.8.0, entrypoints 0.4, evaluate 0.4.2, exceptiongroup 1.2.0, executing 2.0.1, fastjsonschema 2.19.1, filelock 3.13.1, flash-attn 2.6.1, fqdn 1.5.1, frozenlist 1.4.1, fsspec 2024.2.0, h11 0.14.0, hf_transfer 0.1.6, httpcore 1.0.2, httplib2 0.20.2, httpx 0.26.0, huggingface-hub 0.23.4, idna 3.6, importlib_metadata 8.0.0, iniconfig 2.0.0, ipykernel 6.29.0, ipython 8.21.0, ipython-genutils 0.2.0, ipywidgets 8.1.1, isoduration 20.11.0, jedi 0.19.1, jeepney 0.7.1, Jinja2 3.1.3, jmespath 1.0.1, joblib 1.4.2, json5 0.9.14, jsonpointer 2.4, jsonschema 4.21.1, jsonschema-specifications 2023.12.1, jupyter-archive 3.4.0, jupyter_client 7.4.9, jupyter_contrib_core 0.4.2, jupyter_contrib_nbextensions 0.7.0, jupyter_core 5.7.1, jupyter-events 0.9.0, jupyter-highlight-selected-word 0.2.0, jupyter-lsp 2.2.2, jupyter-nbextensions-configurator 0.6.3, jupyter_server 2.12.5, jupyter_server_terminals 0.5.2, jupyterlab 4.1.0, jupyterlab_pygments 0.3.0, jupyterlab_server 2.25.2, jupyterlab-widgets 3.0.9, keyring 23.5.0, launchpadlib 1.10.16, lazr.restfulclient 0.14.4, lazr.uri 1.0.6, locket 1.0.0, lxml 5.1.0, MarkupSafe 2.1.5, matplotlib-inline 0.1.6, mistune 3.0.2, more-itertools 8.10.0, mpmath 1.3.0, multidict 6.0.5, multiprocess 0.70.16, nbclassic 1.0.0, nbclient 0.9.0, nbconvert 7.14.2, nbformat 5.9.2, nest-asyncio 1.6.0, networkx 3.2.1, nltk 3.8.1, notebook 6.5.5, notebook_shim 0.2.3, numpy 1.26.3, nvidia-cublas-cu12 12.1.3.1, nvidia-cuda-cupti-cu12 12.1.105, nvidia-cuda-nvrtc-cu12 12.1.105, nvidia-cuda-runtime-cu12 12.1.105, nvidia-cudnn-cu12 8.9.2.26, nvidia-cufft-cu12 11.0.2.54, nvidia-curand-cu12 10.3.2.106, nvidia-cusolver-cu12 11.4.5.107, nvidia-cusparse-cu12 12.1.0.106, nvidia-nccl-cu12 2.19.3, nvidia-nvjitlink-cu12 12.3.101, nvidia-nvtx-cu12 12.1.105, oauthlib 3.2.0, overrides 7.7.0, packaging 23.2, pandas 2.2.2, pandocfilters 1.5.1, parso 0.8.3, partd 1.4.2, peft 0.11.1, pexpect 4.9.0, pillow 10.2.0, pip 24.1.2, platformdirs 4.2.0, pluggy 1.5.0, polars 1.1.0, prometheus-client 0.19.0, prompt-toolkit 3.0.43, protobuf 5.27.2, psutil 5.9.8, ptyprocess 0.7.0, pure-eval 0.2.2, pyarrow 16.1.0, pyarrow-hotfix 0.6, pyasn1 0.6.0, pycparser 2.21, Pygments 2.17.2, PyGObject 3.42.1, PyJWT 2.3.0, pyparsing 2.4.7, pytest 8.2.2, python-apt 2.4.0+ubuntu3, python-dateutil 2.8.2, python-json-logger 2.0.7, pytz 2024.1, PyYAML 6.0.1, pyzmq 24.0.1, referencing 0.33.0, regex 2024.5.15, requests 2.32.3, rfc3339-validator 0.1.4, rfc3986-validator 0.1.1, rpds-py 0.17.1, rsa 4.7.2, s3transfer 0.10.2, safetensors 0.4.3, scikit-learn 1.5.1, scipy 1.14.0, SecretStorage 3.3.1, Send2Trash 1.8.2, sentence-transformers 3.0.1, sentencepiece 0.2.0, setuptools 69.0.3, six 1.16.0, sniffio 1.3.0, soupsieve 2.5, stack-data 0.6.3, sympy 1.12, tabulate 0.9.0, terminado 0.18.0, threadpoolctl 3.5.0, tiktoken 0.7.0, tinycss2 1.2.1, tokenizers 0.19.1, tomli 2.0.1, toolz 0.12.1, torch 2.2.0, torchaudio 2.2.0, torchdata 0.7.1, torchtext 0.17.0, torchvision 0.17.0, tornado 6.4, tqdm 4.66.4, traitlets 5.14.1, transformers 4.42.4, triton 2.2.0, types-python-dateutil 2.8.19.20240106, typing_extensions 4.9.0, tzdata 2024.1, uri-template 1.3.0, urllib3 2.2.2, wadllib 1.3.6, wcwidth 0.2.13, webcolors 1.13, webencodings 0.5.1, websocket-client 1.7.0, wheel 0.42.0, widgetsnbextension 4.0.9, xxhash 3.4.1, yarl 1.9.4, zipp 1.0.0
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
In Progress