Adding Evaluation Results
#8
by
Weyaxi
- opened
README.md
CHANGED
@@ -1,5 +1,108 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
this is [miqu-1-70b](https://huggingface.co/miqudev/miqu-1-70b), dequantised from q5 to f16 && transposed to pytorch. shapes have been rotated less wrongly than in [alpindale/miqu-1-70b-pytorch](https://huggingface.co/alpindale/miqu-1-70b-pytorch/tree/main)
|
5 |
|
@@ -130,4 +233,17 @@ some benchmarks
|
|
130 |
```
|
131 |
no i do not know why the stderr is high. plausibly it is due to the vllm backend used. this is my lm-eval command in most cases (works on h100):
|
132 |
|
133 |
-
`lm_eval --model vllm --model_args pretrained=./miqu-1-70b-sf,tensor_parallel_size=4,dtype=auto,gpu_memory_utilization=0.88,data_parallel_size=2 --tasks mmlu --batch_size 20`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
model-index:
|
4 |
+
- name: miqu-1-70b-sf
|
5 |
+
results:
|
6 |
+
- task:
|
7 |
+
type: text-generation
|
8 |
+
name: Text Generation
|
9 |
+
dataset:
|
10 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
11 |
+
type: ai2_arc
|
12 |
+
config: ARC-Challenge
|
13 |
+
split: test
|
14 |
+
args:
|
15 |
+
num_few_shot: 25
|
16 |
+
metrics:
|
17 |
+
- type: acc_norm
|
18 |
+
value: 73.04
|
19 |
+
name: normalized accuracy
|
20 |
+
source:
|
21 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
|
22 |
+
name: Open LLM Leaderboard
|
23 |
+
- task:
|
24 |
+
type: text-generation
|
25 |
+
name: Text Generation
|
26 |
+
dataset:
|
27 |
+
name: HellaSwag (10-Shot)
|
28 |
+
type: hellaswag
|
29 |
+
split: validation
|
30 |
+
args:
|
31 |
+
num_few_shot: 10
|
32 |
+
metrics:
|
33 |
+
- type: acc_norm
|
34 |
+
value: 88.61
|
35 |
+
name: normalized accuracy
|
36 |
+
source:
|
37 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
|
38 |
+
name: Open LLM Leaderboard
|
39 |
+
- task:
|
40 |
+
type: text-generation
|
41 |
+
name: Text Generation
|
42 |
+
dataset:
|
43 |
+
name: MMLU (5-Shot)
|
44 |
+
type: cais/mmlu
|
45 |
+
config: all
|
46 |
+
split: test
|
47 |
+
args:
|
48 |
+
num_few_shot: 5
|
49 |
+
metrics:
|
50 |
+
- type: acc
|
51 |
+
value: 75.49
|
52 |
+
name: accuracy
|
53 |
+
source:
|
54 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
|
55 |
+
name: Open LLM Leaderboard
|
56 |
+
- task:
|
57 |
+
type: text-generation
|
58 |
+
name: Text Generation
|
59 |
+
dataset:
|
60 |
+
name: TruthfulQA (0-shot)
|
61 |
+
type: truthful_qa
|
62 |
+
config: multiple_choice
|
63 |
+
split: validation
|
64 |
+
args:
|
65 |
+
num_few_shot: 0
|
66 |
+
metrics:
|
67 |
+
- type: mc2
|
68 |
+
value: 69.38
|
69 |
+
source:
|
70 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
|
71 |
+
name: Open LLM Leaderboard
|
72 |
+
- task:
|
73 |
+
type: text-generation
|
74 |
+
name: Text Generation
|
75 |
+
dataset:
|
76 |
+
name: Winogrande (5-shot)
|
77 |
+
type: winogrande
|
78 |
+
config: winogrande_xl
|
79 |
+
split: validation
|
80 |
+
args:
|
81 |
+
num_few_shot: 5
|
82 |
+
metrics:
|
83 |
+
- type: acc
|
84 |
+
value: 85.32
|
85 |
+
name: accuracy
|
86 |
+
source:
|
87 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
|
88 |
+
name: Open LLM Leaderboard
|
89 |
+
- task:
|
90 |
+
type: text-generation
|
91 |
+
name: Text Generation
|
92 |
+
dataset:
|
93 |
+
name: GSM8k (5-shot)
|
94 |
+
type: gsm8k
|
95 |
+
config: main
|
96 |
+
split: test
|
97 |
+
args:
|
98 |
+
num_few_shot: 5
|
99 |
+
metrics:
|
100 |
+
- type: acc
|
101 |
+
value: 67.7
|
102 |
+
name: accuracy
|
103 |
+
source:
|
104 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=152334H/miqu-1-70b-sf
|
105 |
+
name: Open LLM Leaderboard
|
106 |
---
|
107 |
this is [miqu-1-70b](https://huggingface.co/miqudev/miqu-1-70b), dequantised from q5 to f16 && transposed to pytorch. shapes have been rotated less wrongly than in [alpindale/miqu-1-70b-pytorch](https://huggingface.co/alpindale/miqu-1-70b-pytorch/tree/main)
|
108 |
|
|
|
233 |
```
|
234 |
no i do not know why the stderr is high. plausibly it is due to the vllm backend used. this is my lm-eval command in most cases (works on h100):
|
235 |
|
236 |
+
`lm_eval --model vllm --model_args pretrained=./miqu-1-70b-sf,tensor_parallel_size=4,dtype=auto,gpu_memory_utilization=0.88,data_parallel_size=2 --tasks mmlu --batch_size 20`
|
237 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
238 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_152334H__miqu-1-70b-sf)
|
239 |
+
|
240 |
+
| Metric |Value|
|
241 |
+
|---------------------------------|----:|
|
242 |
+
|Avg. |76.59|
|
243 |
+
|AI2 Reasoning Challenge (25-Shot)|73.04|
|
244 |
+
|HellaSwag (10-Shot) |88.61|
|
245 |
+
|MMLU (5-Shot) |75.49|
|
246 |
+
|TruthfulQA (0-shot) |69.38|
|
247 |
+
|Winogrande (5-shot) |85.32|
|
248 |
+
|GSM8k (5-shot) |67.70|
|
249 |
+
|