Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: microsoft/Phi-3-mini-4k-instruct
bf16: auto
chat_template: llama3
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
  - ad6bf37ce6191a06_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ad6bf37ce6191a06_train_data.json
  type:
    field_input: paper_abstract
    field_instruction: paper_title
    field_output: review_contents
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 1
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 25
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: 0x1202/572f6122-e0bd-4f05-bd76-a64dd181ba40
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 70GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/ad6bf37ce6191a06_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1028
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: null
wandb_mode: online
wandb_name: 572f6122-e0bd-4f05-bd76-a64dd181ba40
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 572f6122-e0bd-4f05-bd76-a64dd181ba40
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

572f6122-e0bd-4f05-bd76-a64dd181ba40

This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0032

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
8.9143 0.0022 1 2.1737
8.4783 0.0543 25 2.0530
8.6589 0.1085 50 2.0315
7.9838 0.1628 75 2.0193
8.3761 0.2170 100 2.0126
8.6124 0.2713 125 2.0082
8.4893 0.3256 150 2.0058
7.9777 0.3798 175 2.0033
8.2338 0.4341 200 2.0032

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
16
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for 0x1202/572f6122-e0bd-4f05-bd76-a64dd181ba40

Adapter
(444)
this model