Model card auto-generated by SimpleTuner
Browse files
README.md
CHANGED
@@ -10,17 +10,7 @@ tags:
|
|
10 |
- lora
|
11 |
- template:sd-lora
|
12 |
inference: true
|
13 |
-
|
14 |
-
- text: 'unconditional (blank prompt)'
|
15 |
-
parameters:
|
16 |
-
negative_prompt: 'blurry, cropped, ugly, creature'
|
17 |
-
output:
|
18 |
-
url: ./assets/image_0_0.png
|
19 |
-
- text: 'e4g4, A pet egg wrapped in moss and plant essence, resembling a Pokémon game item, on a white background, in the style of Ken Sugimori vector art.'
|
20 |
-
parameters:
|
21 |
-
negative_prompt: 'blurry, cropped, ugly, creature'
|
22 |
-
output:
|
23 |
-
url: ./assets/image_1_0.png
|
24 |
---
|
25 |
|
26 |
# sd3_egg_lora_rank32_v1
|
@@ -46,7 +36,7 @@ e4g4, A pet egg wrapped in moss and plant essence, resembling a Pokémon game it
|
|
46 |
|
47 |
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
|
48 |
|
49 |
-
|
50 |
|
51 |
|
52 |
<Gallery />
|
@@ -58,8 +48,8 @@ You may reuse the base model text encoder for inference.
|
|
58 |
## Training settings
|
59 |
|
60 |
- Training epochs: 41
|
61 |
-
- Training steps:
|
62 |
-
- Learning rate:
|
63 |
- Effective batch size: 1
|
64 |
- Micro-batch size: 1
|
65 |
- Gradient accumulation steps: 1
|
@@ -101,7 +91,7 @@ pipeline = DiffusionPipeline.from_pretrained(model_id)
|
|
101 |
pipeline.load_lora_weights(adapter_id)
|
102 |
|
103 |
prompt = "e4g4, A pet egg wrapped in moss and plant essence, resembling a Pokémon game item, on a white background, in the style of Ken Sugimori vector art."
|
104 |
-
negative_prompt = 'blurry, cropped, ugly,
|
105 |
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
|
106 |
image = pipeline(
|
107 |
prompt=prompt,
|
|
|
10 |
- lora
|
11 |
- template:sd-lora
|
12 |
inference: true
|
13 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
# sd3_egg_lora_rank32_v1
|
|
|
36 |
|
37 |
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
|
38 |
|
39 |
+
|
40 |
|
41 |
|
42 |
<Gallery />
|
|
|
48 |
## Training settings
|
49 |
|
50 |
- Training epochs: 41
|
51 |
+
- Training steps: 3001
|
52 |
+
- Learning rate: 8e-05
|
53 |
- Effective batch size: 1
|
54 |
- Micro-batch size: 1
|
55 |
- Gradient accumulation steps: 1
|
|
|
91 |
pipeline.load_lora_weights(adapter_id)
|
92 |
|
93 |
prompt = "e4g4, A pet egg wrapped in moss and plant essence, resembling a Pokémon game item, on a white background, in the style of Ken Sugimori vector art."
|
94 |
+
negative_prompt = 'blurry, cropped, ugly, eyes'
|
95 |
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
|
96 |
image = pipeline(
|
97 |
prompt=prompt,
|