Upload modeling_phi3.py
Browse files- modeling_phi3.py +106 -4
modeling_phi3.py
CHANGED
@@ -17,13 +17,10 @@
|
|
17 |
|
18 |
import inspect
|
19 |
|
20 |
-
import bs4
|
21 |
-
import loguru
|
22 |
import math
|
23 |
import warnings
|
24 |
from typing import List, Optional, Tuple, Union
|
25 |
|
26 |
-
import numpy as np
|
27 |
import torch
|
28 |
import torch.nn.functional as F
|
29 |
import torch.utils.checkpoint
|
@@ -50,7 +47,112 @@ from transformers.utils import (
|
|
50 |
replace_return_docstrings,
|
51 |
)
|
52 |
from .configuration_phi3 import Phi3Config
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
logger = logging.get_logger(__name__)
|
|
|
17 |
|
18 |
import inspect
|
19 |
|
|
|
|
|
20 |
import math
|
21 |
import warnings
|
22 |
from typing import List, Optional, Tuple, Union
|
23 |
|
|
|
24 |
import torch
|
25 |
import torch.nn.functional as F
|
26 |
import torch.utils.checkpoint
|
|
|
47 |
replace_return_docstrings,
|
48 |
)
|
49 |
from .configuration_phi3 import Phi3Config
|
50 |
+
|
51 |
+
from collections import defaultdict
|
52 |
+
from typing import List, Tuple
|
53 |
+
|
54 |
+
import numpy as np
|
55 |
+
from anytree import Node
|
56 |
+
import bs4
|
57 |
+
from anytree import PreOrderIter
|
58 |
+
from anytree.exporter import DotExporter
|
59 |
+
|
60 |
+
|
61 |
+
def nodenamefunc(node):
|
62 |
+
return f"{node.name}|{node.prob}|{node.input_ids}"
|
63 |
+
|
64 |
+
|
65 |
+
class TokenDotExporter(DotExporter):
|
66 |
+
def __init__(self, node, **kwargs):
|
67 |
+
super().__init__(node, **kwargs)
|
68 |
+
|
69 |
+
def __iter__(self):
|
70 |
+
# prepare
|
71 |
+
indent = " " * self.indent
|
72 |
+
nodenamefunc = self.nodenamefunc or self._default_nodenamefunc
|
73 |
+
nodeattrfunc = self.nodeattrfunc or self._default_nodeattrfunc
|
74 |
+
edgeattrfunc = self.edgeattrfunc or self._default_edgeattrfunc
|
75 |
+
edgetypefunc = self.edgetypefunc or self._default_edgetypefunc
|
76 |
+
filter_ = self.filter_ or self._default_filter
|
77 |
+
return self.__iter(indent, nodenamefunc, nodeattrfunc, edgeattrfunc, edgetypefunc, filter_)
|
78 |
+
|
79 |
+
def __iter_nodes(self, indent, nodenamefunc, nodeattrfunc, filter_):
|
80 |
+
for node in PreOrderIter(self.node, filter_=filter_, stop=self.stop, maxlevel=self.maxlevel):
|
81 |
+
nodename = nodenamefunc(node)
|
82 |
+
nodeattr = nodeattrfunc(node)
|
83 |
+
nodeattr = " {%s}" % nodeattr if nodeattr is not None else ""
|
84 |
+
yield '%s%s' % (DotExporter.esc(nodename), nodeattr)
|
85 |
+
|
86 |
+
def __iter(self, indent, nodenamefunc, nodeattrfunc, edgeattrfunc, edgetypefunc, filter_):
|
87 |
+
for node in self.__iter_nodes(indent, nodenamefunc, nodeattrfunc, filter_):
|
88 |
+
yield node
|
89 |
+
|
90 |
+
|
91 |
+
class TokenIdNode(Node):
|
92 |
+
def __init__(self, name, parent=None, children=None, **kwargs):
|
93 |
+
super().__init__(name, parent, children, **kwargs)
|
94 |
+
self.input_ids = kwargs.get('input_ids', [])
|
95 |
+
self.prob = kwargs.get('prob', np.float32(0.0))
|
96 |
+
|
97 |
+
|
98 |
+
def split_tree(soup: bs4.BeautifulSoup, max_node_words=0) -> List[Tuple[bs4.element.Tag, List[str], bool]]:
|
99 |
+
word_count = len(soup.get_text().split())
|
100 |
+
if word_count > max_node_words:
|
101 |
+
possible_trees = [(soup, [])]
|
102 |
+
target_trees = [] # [(tag, path, is_leaf)]
|
103 |
+
# split the entire dom tee into subtrees, until the length of the subtree is less than max_node_words words
|
104 |
+
# find all possible trees
|
105 |
+
while True:
|
106 |
+
if len(possible_trees) == 0:
|
107 |
+
break
|
108 |
+
tree = possible_trees.pop(0)
|
109 |
+
tag_children = defaultdict(int)
|
110 |
+
bare_word_count = 0
|
111 |
+
# count child tags
|
112 |
+
for child in tree[0].contents:
|
113 |
+
if isinstance(child, bs4.element.Tag):
|
114 |
+
tag_children[child.name] += 1
|
115 |
+
_tag_children = {k: 0 for k in tag_children.keys()}
|
116 |
+
|
117 |
+
# check if the tree can be split
|
118 |
+
for child in tree[0].contents:
|
119 |
+
if isinstance(child, bs4.element.Tag):
|
120 |
+
# change child tag with duplicate names
|
121 |
+
if tag_children[child.name] > 1:
|
122 |
+
new_name = f"{child.name}{_tag_children[child.name]}"
|
123 |
+
new_tree = (child, tree[1] + [new_name])
|
124 |
+
_tag_children[child.name] += 1
|
125 |
+
child.name = new_name
|
126 |
+
else:
|
127 |
+
new_tree = (child, tree[1] + [child.name])
|
128 |
+
word_count = len(child.get_text().split())
|
129 |
+
# add node with more than max_node_words words, and recursion depth is less than 64
|
130 |
+
if word_count > max_node_words and len(new_tree[1]) < 64:
|
131 |
+
possible_trees.append(new_tree)
|
132 |
+
else:
|
133 |
+
target_trees.append((new_tree[0], new_tree[1], True))
|
134 |
+
else:
|
135 |
+
bare_word_count += len(str(child).split())
|
136 |
+
|
137 |
+
# add leaf node
|
138 |
+
if len(tag_children) == 0:
|
139 |
+
target_trees.append((tree[0], tree[1], True))
|
140 |
+
# add node with more than max_node_words bare words
|
141 |
+
elif bare_word_count > max_node_words:
|
142 |
+
target_trees.append((tree[0], tree[1], False))
|
143 |
+
else:
|
144 |
+
soup_children = [c for c in soup.contents if isinstance(c, bs4.element.Tag)]
|
145 |
+
if len(soup_children) == 1:
|
146 |
+
target_trees = [(soup_children[0], [soup_children[0].name], True)]
|
147 |
+
else:
|
148 |
+
# add an html tag to wrap all children
|
149 |
+
new_soup = bs4.BeautifulSoup("", 'html.parser')
|
150 |
+
new_tag = new_soup.new_tag("html")
|
151 |
+
new_soup.append(new_tag)
|
152 |
+
for child in soup_children:
|
153 |
+
new_tag.append(child)
|
154 |
+
target_trees = [(new_tag, ["html"], True)]
|
155 |
+
return target_trees
|
156 |
|
157 |
|
158 |
logger = logging.get_logger(__name__)
|