|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Phi-3 model."""
|
|
|
|
import inspect
|
|
|
|
import bs4
|
|
import loguru
|
|
import math
|
|
import warnings
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
|
from transformers.activations import ACT2FN
|
|
from transformers.cache_utils import Cache, DynamicCache
|
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutputWithPast,
|
|
CausalLMOutputWithPast,
|
|
SequenceClassifierOutputWithPast,
|
|
TokenClassifierOutput,
|
|
)
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.utils import (
|
|
add_code_sample_docstrings,
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
is_flash_attn_2_available,
|
|
is_flash_attn_greater_or_equal_2_10,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
from .configuration_phi3 import Phi3Config
|
|
from .tree_gen_utils import split_tree, TokenIdNode, TokenDotExporter, nodenamefunc
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
_flash_supports_window_size = False
|
|
try:
|
|
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
|
except ImportError as error:
|
|
logger.warning(
|
|
f"`flash-attention` package not found, consider installing for better performance: {error}."
|
|
)
|
|
if not _flash_supports_window_size:
|
|
logger.warning(
|
|
"Current `flash-attention` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
|
|
)
|
|
|
|
_CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
|
|
_CONFIG_FOR_DOC = "Phi3Config"
|
|
|
|
PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
"microsoft/Phi-3-mini-4k-instruct",
|
|
"microsoft/Phi-3-mini-128k-instruct",
|
|
|
|
]
|
|
|
|
|
|
|
|
class Phi3RMSNorm(nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
"""
|
|
Phi3RMSNorm is equivalent to T5LayerNorm
|
|
"""
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, hidden_states):
|
|
input_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
return self.weight * hidden_states.to(input_dtype)
|
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask):
|
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
|
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
|
return (
|
|
indices,
|
|
cu_seqlens,
|
|
max_seqlen_in_batch,
|
|
)
|
|
|
|
|
|
|
|
class Phi3RotaryEmbedding(nn.Module):
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
|
super().__init__()
|
|
|
|
self.dim = dim
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.base = base
|
|
self.register_buffer("inv_freq", None, persistent=False)
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x, position_ids, seq_len=None):
|
|
|
|
if self.inv_freq is None:
|
|
self.inv_freq = 1.0 / (
|
|
self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
|
|
)
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
|
|
|
|
device_type = x.device.type
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
with torch.autocast(device_type=device_type, enabled=False):
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
cos = emb.cos()
|
|
sin = emb.sin()
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
|
|
|
|
class Phi3LongRoPEScaledRotaryEmbedding(Phi3RotaryEmbedding):
|
|
def __init__(self, dim, config, device=None):
|
|
super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
|
|
|
|
self.short_factor = config.rope_scaling["short_factor"]
|
|
self.long_factor = config.rope_scaling["long_factor"]
|
|
self.original_max_position_embeddings = config.original_max_position_embeddings
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x, position_ids, seq_len=None):
|
|
seq_len = seq_len or torch.max(position_ids) + 1
|
|
if seq_len > self.original_max_position_embeddings:
|
|
ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
|
|
else:
|
|
ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
|
|
|
|
inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
|
|
self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
|
|
|
|
|
|
device_type = x.device.type
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
with torch.autocast(device_type=device_type, enabled=False):
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
|
|
scale = self.max_position_embeddings / self.original_max_position_embeddings
|
|
if scale <= 1.0:
|
|
scaling_factor = 1.0
|
|
else:
|
|
scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
|
|
|
|
cos = emb.cos() * scaling_factor
|
|
sin = emb.sin() * scaling_factor
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
|
|
|
|
|
|
def rotate_half(x):
|
|
"""Rotates half the hidden dims of the input."""
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2 :]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
"""Applies Rotary Position Embedding to the query and key tensors.
|
|
|
|
Args:
|
|
q (`torch.Tensor`): The query tensor.
|
|
k (`torch.Tensor`): The key tensor.
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
|
position_ids (`torch.Tensor`, *optional*):
|
|
Deprecated and unused.
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
Returns:
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
|
"""
|
|
cos = cos.unsqueeze(unsqueeze_dim)
|
|
sin = sin.unsqueeze(unsqueeze_dim)
|
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
return q_embed, k_embed
|
|
|
|
|
|
class Phi3MLP(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
|
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
|
|
|
self.activation_fn = ACT2FN[config.hidden_act]
|
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
|
up_states = self.gate_up_proj(hidden_states)
|
|
|
|
gate, up_states = up_states.chunk(2, dim=-1)
|
|
up_states = up_states * self.activation_fn(gate)
|
|
|
|
return self.down_proj(up_states)
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
"""
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
"""
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
if n_rep == 1:
|
|
return hidden_states
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
|
|
|
|
class Phi3Attention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
if layer_idx is None:
|
|
logger.warning_once(
|
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
|
"when creating this class."
|
|
)
|
|
|
|
self.attention_dropout = config.attention_dropout
|
|
self.hidden_size = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
self.num_key_value_heads = config.num_key_value_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
self.max_position_embeddings = config.max_position_embeddings
|
|
self.original_max_position_embeddings = config.original_max_position_embeddings
|
|
self.rope_theta = config.rope_theta
|
|
self.rope_scaling = config.rope_scaling
|
|
self.is_causal = True
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
raise ValueError(
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
|
f" and `num_heads`: {self.num_heads})."
|
|
)
|
|
|
|
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
|
self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
|
|
self._init_rope()
|
|
|
|
def _init_rope(self):
|
|
if self.rope_scaling is None:
|
|
self.rotary_emb = Phi3RotaryEmbedding(
|
|
self.head_dim,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
base=self.rope_theta,
|
|
)
|
|
else:
|
|
scaling_type = self.config.rope_scaling["type"]
|
|
if scaling_type == "longrope":
|
|
self.rotary_emb = Phi3LongRoPEScaledRotaryEmbedding(self.head_dim, self.config)
|
|
else:
|
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
qkv = self.qkv_proj(hidden_states)
|
|
query_pos = self.num_heads * self.head_dim
|
|
query_states = qkv[..., :query_pos]
|
|
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
|
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
if self.layer_idx is None:
|
|
raise ValueError(
|
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
|
"with a layer index."
|
|
)
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {"sin": sin, "cos": cos}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
|
f" {attn_weights.size()}"
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
|
)
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
|
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
|
|
|
attn_output = torch.matmul(attn_weights, value_states)
|
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
raise ValueError(
|
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
|
f" {attn_output.size()}"
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
class Phi3FlashAttention2(Phi3Attention):
|
|
"""
|
|
Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
|
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
|
flash attention and deal with padding tokens in case the input contains any of them.
|
|
"""
|
|
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
|
|
if not _flash_supports_window_size:
|
|
logger.warning_once(
|
|
"The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
|
|
)
|
|
raise ValueError("The current flash attention version does not support sliding window attention.")
|
|
|
|
output_attentions = False
|
|
|
|
if "padding_mask" in kwargs:
|
|
warnings.warn(
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
|
)
|
|
|
|
|
|
attention_mask = kwargs.pop("padding_mask")
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
qkv = self.qkv_proj(hidden_states)
|
|
query_pos = self.num_heads * self.head_dim
|
|
query_states = qkv[..., :query_pos]
|
|
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
|
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
|
|
|
|
|
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
if self.layer_idx is None:
|
|
raise ValueError(
|
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
|
"with a layer index."
|
|
)
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
|
|
|
|
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item() + 1)
|
|
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
use_sliding_windows = (
|
|
_flash_supports_window_size
|
|
and getattr(self.config, "sliding_window", None) is not None
|
|
and kv_seq_len > self.config.sliding_window
|
|
)
|
|
|
|
if past_key_value is not None:
|
|
|
|
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
|
if (
|
|
getattr(self.config, "sliding_window", None) is not None
|
|
and kv_seq_len > self.config.sliding_window
|
|
and cache_has_contents
|
|
):
|
|
slicing_tokens = 1 - self.config.sliding_window
|
|
|
|
past_key = past_key_value[self.layer_idx][0]
|
|
past_value = past_key_value[self.layer_idx][1]
|
|
|
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
|
|
|
if past_key.shape[-2] != self.config.sliding_window - 1:
|
|
raise ValueError(
|
|
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
|
f" {past_key.shape}"
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask[:, slicing_tokens:]
|
|
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
attn_dropout = self.attention_dropout if self.training else 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if query_states.dtype == torch.float32:
|
|
if torch.is_autocast_enabled():
|
|
target_dtype = torch.get_autocast_gpu_dtype()
|
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"):
|
|
target_dtype = self.config._pre_quantization_dtype
|
|
else:
|
|
target_dtype = self.qkv_proj.weight.dtype
|
|
|
|
logger.warning_once(
|
|
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
|
f" {target_dtype}."
|
|
)
|
|
|
|
query_states = query_states.to(target_dtype)
|
|
key_states = key_states.to(target_dtype)
|
|
value_states = value_states.to(target_dtype)
|
|
|
|
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
|
|
attn_output = self._flash_attention_forward(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
q_len,
|
|
dropout=attn_dropout,
|
|
use_sliding_windows=use_sliding_windows,
|
|
)
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
|
|
def _flash_attention_forward(
|
|
self,
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
query_length,
|
|
dropout=0.0,
|
|
softmax_scale=None,
|
|
use_sliding_windows=False,
|
|
):
|
|
"""
|
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
|
first unpad the input, then computes the attention scores and pad the final attention scores.
|
|
|
|
Args:
|
|
query_states (`torch.Tensor`):
|
|
Input query states to be passed to Flash Attention API
|
|
key_states (`torch.Tensor`):
|
|
Input key states to be passed to Flash Attention API
|
|
value_states (`torch.Tensor`):
|
|
Input value states to be passed to Flash Attention API
|
|
attention_mask (`torch.Tensor`):
|
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
|
position of padding tokens and 1 for the position of non-padding tokens.
|
|
dropout (`float`):
|
|
Attention dropout
|
|
softmax_scale (`float`, *optional*):
|
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
|
use_sliding_windows (`bool`, *optional*):
|
|
Whether to activate sliding window attention.
|
|
"""
|
|
if not self._flash_attn_uses_top_left_mask:
|
|
causal = self.is_causal
|
|
else:
|
|
|
|
causal = self.is_causal and query_length != 1
|
|
|
|
|
|
if attention_mask is not None:
|
|
batch_size = query_states.shape[0]
|
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
|
query_states, key_states, value_states, attention_mask, query_length
|
|
)
|
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
|
|
|
if not use_sliding_windows:
|
|
attn_output_unpad = flash_attn_varlen_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
cu_seqlens_q=cu_seqlens_q,
|
|
cu_seqlens_k=cu_seqlens_k,
|
|
max_seqlen_q=max_seqlen_in_batch_q,
|
|
max_seqlen_k=max_seqlen_in_batch_k,
|
|
dropout_p=dropout,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
)
|
|
else:
|
|
attn_output_unpad = flash_attn_varlen_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
cu_seqlens_q=cu_seqlens_q,
|
|
cu_seqlens_k=cu_seqlens_k,
|
|
max_seqlen_q=max_seqlen_in_batch_q,
|
|
max_seqlen_k=max_seqlen_in_batch_k,
|
|
dropout_p=dropout,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
window_size=(self.config.sliding_window, self.config.sliding_window),
|
|
)
|
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
|
else:
|
|
if not use_sliding_windows:
|
|
attn_output = flash_attn_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
dropout,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
)
|
|
else:
|
|
attn_output = flash_attn_func(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
dropout,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
window_size=(self.config.sliding_window, self.config.sliding_window),
|
|
)
|
|
|
|
return attn_output
|
|
|
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
|
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
|
|
|
|
|
|
|
if kv_seq_len != attention_mask.shape[-1]:
|
|
attention_mask_num_tokens = attention_mask.shape[-1]
|
|
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
|
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
|
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
|
|
|
if query_length == kv_seq_len:
|
|
query_layer = index_first_axis(
|
|
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
|
)
|
|
cu_seqlens_q = cu_seqlens_k
|
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
|
indices_q = indices_k
|
|
elif query_length == 1:
|
|
max_seqlen_in_batch_q = 1
|
|
cu_seqlens_q = torch.arange(
|
|
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
|
)
|
|
indices_q = cu_seqlens_q[:-1]
|
|
query_layer = query_layer.squeeze(1)
|
|
else:
|
|
|
|
attention_mask = attention_mask[:, -query_length:]
|
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
|
|
|
return (
|
|
query_layer,
|
|
key_layer,
|
|
value_layer,
|
|
indices_q,
|
|
(cu_seqlens_q, cu_seqlens_k),
|
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
|
)
|
|
|
|
|
|
|
|
|
|
class Phi3SdpaAttention(Phi3Attention):
|
|
"""
|
|
Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
|
`Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
|
SDPA API.
|
|
"""
|
|
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
if output_attentions:
|
|
|
|
logger.warning_once(
|
|
"Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
|
)
|
|
return super().forward(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
qkv = self.qkv_proj(hidden_states)
|
|
query_pos = self.num_heads * self.head_dim
|
|
query_states = qkv[..., :query_pos]
|
|
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
|
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {"sin": sin, "cos": cos}
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
|
|
if attention_mask is not None:
|
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
|
raise ValueError(
|
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
|
)
|
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None:
|
|
query_states = query_states.contiguous()
|
|
key_states = key_states.contiguous()
|
|
value_states = value_states.contiguous()
|
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attn_mask=attention_mask,
|
|
dropout_p=self.attention_dropout if self.training else 0.0,
|
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
|
)
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
return attn_output, None, past_key_value
|
|
|
|
|
|
PHI3_ATTENTION_CLASSES = {
|
|
"eager": Phi3Attention,
|
|
"flash_attention_2": Phi3FlashAttention2,
|
|
"sdpa": Phi3SdpaAttention,
|
|
}
|
|
|
|
|
|
class Phi3DecoderLayer(nn.Module):
|
|
def __init__(self, config: Phi3Config, layer_idx: int):
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
if is_flash_attn_2_available():
|
|
config._attn_implementation = "flash_attention_2"
|
|
|
|
self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
|
|
|
self.mlp = Phi3MLP(config)
|
|
self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
|
|
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
|
|
self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
**kwargs,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
if "padding_mask" in kwargs:
|
|
warnings.warn(
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
|
)
|
|
"""
|
|
Args:
|
|
hidden_states (`torch.FloatTensor`):
|
|
input to the layer of shape `(batch, seq_len, embed_dim)`
|
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
|
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
returned tensors for more detail.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
|
(see `past_key_values`).
|
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
|
"""
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
|
|
attn_outputs, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
hidden_states = residual + self.resid_attn_dropout(attn_outputs)
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + self.resid_mlp_dropout(hidden_states)
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
if use_cache:
|
|
outputs += (present_key_value,)
|
|
|
|
return outputs
|
|
|
|
|
|
PHI3_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`Phi3Config`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
|
|
PHI3_START_DOCSTRING,
|
|
)
|
|
class Phi3PreTrainedModel(PreTrainedModel):
|
|
config_class = Phi3Config
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["Phi3DecoderLayer"]
|
|
_skip_keys_device_placement = "past_key_values"
|
|
_supports_flash_attn_2 = True
|
|
_supports_sdpa = False
|
|
_supports_cache_class = True
|
|
|
|
_version = "0.0.5"
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
PHI3_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
|
Two formats are allowed:
|
|
- a [`~cache_utils.Cache`] instance;
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
|
cache format.
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
|
legacy cache format will be returned.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare Phi-3 model outputting raw hidden-states without any specific head on top.",
|
|
PHI3_START_DOCSTRING,
|
|
)
|
|
class Phi3Model(Phi3PreTrainedModel):
|
|
"""
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
|
|
|
|
Args:
|
|
config: Phi3Config
|
|
"""
|
|
|
|
def __init__(self, config: Phi3Config):
|
|
super().__init__(config)
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
|
self.layers = nn.ModuleList(
|
|
[Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
)
|
|
if is_flash_attn_2_available():
|
|
config._attn_implementation = "flash_attention_2"
|
|
self._attn_implementation = config._attn_implementation
|
|
self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape[:2]
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length = inputs_embeds.shape[:2]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
past_key_values_length = 0
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
if use_cache:
|
|
use_legacy_cache = not isinstance(past_key_values, Cache)
|
|
if use_legacy_cache:
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
|
|
|
if position_ids is None:
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
position_ids = torch.arange(
|
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
|
)
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
else:
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
|
if is_padding_right:
|
|
raise ValueError(
|
|
"You are attempting to perform batched generation with padding_side='right'"
|
|
" this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
|
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
|
)
|
|
|
|
if self._attn_implementation == "flash_attention_2":
|
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
|
else:
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
|
attention_mask,
|
|
(batch_size, seq_length),
|
|
inputs_embeds,
|
|
past_key_values_length,
|
|
sliding_window=self.config.sliding_window,
|
|
)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
for decoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = None
|
|
if use_cache:
|
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
|
|
class Phi3ForCausalLM(Phi3PreTrainedModel):
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = Phi3Model(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
|
|
|
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
|
|
>>> prompt = "This is an example script ."
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
|
```"""
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.float()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
def prepare_inputs_for_generation(
|
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
|
):
|
|
|
|
|
|
if past_key_values and self.config.rope_scaling and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1:
|
|
past_length = past_key_values.seen_tokens if isinstance(past_key_values, Cache) else past_key_values[0][0].shape[2]
|
|
if past_length <= self.config.original_max_position_embeddings:
|
|
past_key_values = None
|
|
|
|
if past_key_values is not None:
|
|
if isinstance(past_key_values, Cache):
|
|
cache_length = past_key_values.get_seq_length()
|
|
past_length = past_key_values.seen_tokens
|
|
max_cache_length = past_key_values.get_max_length()
|
|
else:
|
|
cache_length = past_length = past_key_values[0][0].shape[2]
|
|
max_cache_length = None
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
|
|
|
|
|
elif past_length < input_ids.shape[1]:
|
|
input_ids = input_ids[:, past_length:]
|
|
|
|
|
|
|
|
if (
|
|
max_cache_length is not None
|
|
and attention_mask is not None
|
|
and cache_length + input_ids.shape[1] > max_cache_length
|
|
):
|
|
attention_mask = attention_mask[:, -max_cache_length:]
|
|
|
|
position_ids = kwargs.get("position_ids", None)
|
|
if attention_mask is not None and position_ids is None:
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
else:
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
model_inputs.update(
|
|
{
|
|
"position_ids": position_ids,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"attention_mask": attention_mask,
|
|
}
|
|
)
|
|
return model_inputs
|
|
|
|
@staticmethod
|
|
|
|
def _reorder_cache(past_key_values, beam_idx):
|
|
reordered_past = ()
|
|
for layer_past in past_key_values:
|
|
reordered_past += (
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
|
)
|
|
return reordered_past
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The [`Phi3Model`] with a sequence classification head on top (linear layer).
|
|
|
|
[`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
(e.g. GPT-2) do.
|
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
|
each row of the batch).
|
|
""",
|
|
PHI3_START_DOCSTRING,
|
|
)
|
|
|
|
class Phi3ForSequenceClassification(Phi3PreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.model = Phi3Model(config)
|
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
model_outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = model_outputs[0]
|
|
logits = self.score(hidden_states)
|
|
|
|
if input_ids is not None:
|
|
batch_size = input_ids.shape[0]
|
|
else:
|
|
batch_size = inputs_embeds.shape[0]
|
|
|
|
if self.config.pad_token_id is None and batch_size != 1:
|
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
if self.config.pad_token_id is None:
|
|
sequence_lengths = -1
|
|
else:
|
|
if input_ids is not None:
|
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
|
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
|
sequence_lengths = sequence_lengths.to(logits.device)
|
|
else:
|
|
sequence_lengths = -1
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
labels = labels.to(logits.device)
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
if self.num_labels == 1:
|
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = loss_fct(pooled_logits, labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(pooled_logits, labels)
|
|
if not return_dict:
|
|
output = (pooled_logits,) + model_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
loss=loss,
|
|
logits=pooled_logits,
|
|
past_key_values=model_outputs.past_key_values,
|
|
hidden_states=model_outputs.hidden_states,
|
|
attentions=model_outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
[`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
|
Named-Entity-Recognition (NER) tasks.
|
|
""",
|
|
PHI3_START_DOCSTRING,
|
|
)
|
|
|
|
class Phi3ForTokenClassification(Phi3PreTrainedModel):
|
|
def __init__(self, config: Phi3Config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
|
|
self.model = Phi3Model(config)
|
|
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
|
classifier_dropout = config.classifier_dropout
|
|
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
|
classifier_dropout = config.hidden_dropout
|
|
else:
|
|
classifier_dropout = 0.1
|
|
self.dropout = nn.Dropout(classifier_dropout)
|
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
|
|
self.post_init()
|
|
|
|
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=TokenClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**deprecated_arguments,
|
|
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
model_outputs = self.model(
|
|
input_ids,
|
|
past_key_values=past_key_values,
|
|
attention_mask=attention_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = model_outputs[0]
|
|
hidden_states = self.dropout(hidden_states)
|
|
logits = self.classifier(hidden_states)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
|
|
labels = labels.to(logits.device)
|
|
batch_size, seq_length = labels.shape
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(
|
|
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
|
|
)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + model_outputs[2:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return TokenClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=model_outputs.hidden_states,
|
|
attentions=model_outputs.attentions,
|
|
)
|
|
|
|
class PHI3ForHTMLTreeGeneration(Phi3PreTrainedModel):
|
|
|
|
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = Phi3Model(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
|
|
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
|
|
|
|
>>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
|
|
|
>>> prompt = "This is an example script ."
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
|
|
```"""
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.float()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
def prepare_inputs_for_generation(
|
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
|
):
|
|
|
|
|
|
if past_key_values and self.config.rope_scaling and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1:
|
|
past_length = past_key_values.seen_tokens if isinstance(past_key_values, Cache) else past_key_values[0][0].shape[2]
|
|
if past_length <= self.config.original_max_position_embeddings:
|
|
past_key_values = None
|
|
|
|
if past_key_values is not None:
|
|
if isinstance(past_key_values, Cache):
|
|
cache_length = past_key_values.get_seq_length()
|
|
past_length = past_key_values.seen_tokens
|
|
max_cache_length = past_key_values.get_max_length()
|
|
else:
|
|
cache_length = past_length = past_key_values[0][0].shape[2]
|
|
max_cache_length = None
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
|
|
|
|
|
elif past_length < input_ids.shape[1]:
|
|
input_ids = input_ids[:, past_length:]
|
|
|
|
|
|
|
|
if (
|
|
max_cache_length is not None
|
|
and attention_mask is not None
|
|
and cache_length + input_ids.shape[1] > max_cache_length
|
|
):
|
|
attention_mask = attention_mask[:, -max_cache_length:]
|
|
|
|
position_ids = kwargs.get("position_ids", None)
|
|
if attention_mask is not None and position_ids is None:
|
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
if past_key_values:
|
|
position_ids = position_ids[:, -input_ids.shape[1] :]
|
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs = {"inputs_embeds": inputs_embeds}
|
|
else:
|
|
model_inputs = {"input_ids": input_ids}
|
|
|
|
model_inputs.update(
|
|
{
|
|
"position_ids": position_ids,
|
|
"past_key_values": past_key_values,
|
|
"use_cache": kwargs.get("use_cache"),
|
|
"attention_mask": attention_mask,
|
|
}
|
|
)
|
|
return model_inputs
|
|
|
|
@staticmethod
|
|
|
|
def _reorder_cache(past_key_values, beam_idx):
|
|
reordered_past = ()
|
|
for layer_past in past_key_values:
|
|
reordered_past += (
|
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
|
)
|
|
return reordered_past
|
|
|
|
@torch.inference_mode()
|
|
def generate_html_tree(self,
|
|
tokenizer,
|
|
query: List[str],
|
|
htmls: List[List[str]],
|
|
**kwargs):
|
|
max_seq_length = kwargs.pop("max_seq_length", 131072)
|
|
def apply_html_tree_template(query, htmls):
|
|
template = """**HTML**: ```{input_html}```\n**Question**: **{question}**\n Your task is to identify the most relevant text piece to the given question in the HTML document. This text piece could either be a direct paraphrase to the fact, or a supporting evidence that can be used to infer the fact. The overall length of the text piece should be more than 300 words and less than 500 words. You should provide the path to the text piece in the HTML document. An example for the output is: <html 1><body><div 2><p>Some key information..."""
|
|
return template.format(input_html="\n".join(htmls), question=query)
|
|
|
|
res_html_refs = []
|
|
|
|
for idx, _htmls in enumerate(htmls):
|
|
if isinstance(_htmls, str):
|
|
_htmls = [_htmls]
|
|
else:
|
|
|
|
html_token_lens = [len(tokenizer.encode(html)) for html in _htmls]
|
|
total_html_token_len = sum(html_token_lens)
|
|
while total_html_token_len > max_seq_length - 2048:
|
|
if len(_htmls) == 1:
|
|
break
|
|
max_length_idx = html_token_lens.index(max(html_token_lens))
|
|
html_token_lens.pop(max_length_idx)
|
|
_htmls.pop(max_length_idx)
|
|
total_html_token_len = sum(html_token_lens)
|
|
|
|
model_input = apply_html_tree_template(query, _htmls)
|
|
|
|
inputs = tokenizer.apply_chat_template([{"role": "user", "content": model_input}], add_special_tokens=True,
|
|
add_generation_prompt=True, tokenize=True, return_tensors="pt",
|
|
return_dict=True)
|
|
|
|
|
|
soup = bs4.BeautifulSoup("", 'html.parser')
|
|
for html in _htmls:
|
|
soup.append(bs4.BeautifulSoup(html, 'html.parser'))
|
|
|
|
token_id_paths = []
|
|
html_chunk_paths = split_tree(soup, max_node_words=self.max_node_words)
|
|
is_leaf = [p[2] for p in html_chunk_paths]
|
|
html_chunk_paths = [p[1] for p in html_chunk_paths]
|
|
|
|
for path in html_chunk_paths:
|
|
path_str = "<" + "><".join(path) + ">"
|
|
token_ids = tokenizer.encode(path_str, add_special_tokens=False)
|
|
token_id_paths.append(token_ids)
|
|
|
|
|
|
root = TokenIdNode(-1)
|
|
for path in token_id_paths:
|
|
parent = root
|
|
|
|
for i, token_id in enumerate(path):
|
|
has_child = False
|
|
|
|
for child in parent.children:
|
|
if child.name == token_id:
|
|
parent = child
|
|
has_child = True
|
|
break
|
|
if not has_child:
|
|
node = TokenIdNode(token_id, parent=parent, input_ids=path[:i + 1])
|
|
parent = node
|
|
|
|
node_queue = [root]
|
|
while node_queue:
|
|
cur_node = node_queue.pop(0)
|
|
children = cur_node.children
|
|
if len(children) == 1:
|
|
cur_node.children[0].prob = str(np.float32(1.0))
|
|
node_queue.append(children[0])
|
|
continue
|
|
elif len(children) == 0:
|
|
continue
|
|
|
|
force_token_id = [c.name for c in children]
|
|
child_input_ids = torch.tensor(cur_node.input_ids, dtype=torch.long).unsqueeze(0)
|
|
|
|
child_input_ids = torch.cat([inputs["input_ids"][idx:idx + 1], child_input_ids], dim=1).to(self.device)
|
|
model_inputs = self.prepare_inputs_for_generation(child_input_ids, **kwargs)
|
|
outputs = self(
|
|
**model_inputs,
|
|
return_dict=True,
|
|
)
|
|
|
|
force_token_id = torch.tensor(force_token_id, device=self.device)
|
|
probs = torch.gather(outputs.logits[:, 0, :], -1, force_token_id.unsqueeze(0))
|
|
|
|
probs = torch.nn.functional.softmax(probs, dim=-1)
|
|
|
|
|
|
probs = probs.squeeze(0).detach().to(torch.float32).cpu().numpy()
|
|
for i, child in enumerate(children):
|
|
child.prob = str(probs[i])
|
|
node_queue.append(child)
|
|
|
|
res_html_refs.append({
|
|
"html": str(soup),
|
|
"paths": html_chunk_paths,
|
|
"is_leaf": is_leaf,
|
|
"path_token_ids": token_id_paths,
|
|
"node_tree": list(TokenDotExporter(root, nodenamefunc=nodenamefunc))
|
|
})
|
|
return res_html_refs
|
|
|