zoltantensorfow commited on
Commit
5d30c14
·
1 Parent(s): 40c9f1c

Improved version

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 1781.47 +/- 144.71
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 2836.29 +/- 12.24
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:125f40d2e127d9ba754e79677c790c0fce1a6f5dc5726c083492c9fa13772b55
3
- size 129229
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b11fd3dae0ea4b68b595edd292894f187259432c40e0af7fe73d5c40a1b1ebc
3
+ size 129231
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8d8fc04790>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8d8fc04820>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8d8fc048b0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8d8fc04940>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f8d8fc049d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f8d8fc04a60>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8d8fc04af0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8d8fc04b80>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f8d8fc04c10>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8d8fc04ca0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8d8fc04d30>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8d8fc04dc0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f8d8fc05b80>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
@@ -32,21 +32,21 @@
32
  "weight_decay": 0
33
  }
34
  },
35
- "num_timesteps": 3000000,
36
- "_total_timesteps": 3000000,
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
- "start_time": 1681666822493871529,
41
- "learning_rate": 0.001,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
44
  ":type:": "<class 'function'>",
45
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD6M4j1yXkU+Tr4DP7VekT/EnwW/JuESPwVWJ70/1h2/3EB9v0f7I7+Il3q/XdB7PY5jiD5WwYA/qCn8PtJoxz/kIiq9SmC5P1SQIz+Sqk+/ctiGvn8Ztb/a6kQ/fgbaPm6wYb8OuQU/oQvDv55+hD9SZp4+AyaiP1H4/byFzNc/1FO4vxX2jT+72DI/rI3fvsk2S7+cDe8/vUzLP1zMSz5yrpq+MDzvvzaYI766i1Q+fUOhvzBPlr8eVTY/Ai6XvAENF75D6YQ/btZAvz28OL/aMJE/SQv1v3sAKD/UUHe/KaMRP8p1Qb6QePs+57N9P2iRl7+ARba/5W4KP/P5Db9gBgU/SOSgv0ShuD9IBX2/59CNvzue2D6O1EG/Eh4MP0iX87+TshC9IFg3P5zUXr2FIxg/rVK8Pq7g2L6y3JA+2jCRPw65BT97ACg/1FB3v846sr4/iL6+zOHhPmN/7D4DF9y/s0x7PjoXeT4O5dA9i1U/vwA4McC/6A+/SF0PwKSxhb+Ml9O9zIiBvg1Btj9qH1u/Qu65PZCtNj+/+828vlhdvUyH/L+BWoi9HAtAP26wYb8OuQU/oQvDv55+hD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
@@ -54,7 +54,7 @@
54
  },
55
  "_last_original_obs": {
56
  ":type:": "<class 'numpy.ndarray'>",
57
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABQVL42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApNIOPQAAAADQ7fq/AAAAAHm73T0AAAAAyD/nPwAAAACvn+g9AAAAABxH4T8AAAAAbjttvQAAAABns+2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzzdMwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJDnjzwAAAAAq9DavwAAAADQb4I8AAAAADfg3T8AAAAAdBsSPgAAAAASFf0/AAAAAODY/j0AAAAAxwYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCRYjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICMCCO8AAAAAM7M7b8AAAAAcBWKPQAAAADjbeo/AAAAAORYXT0AAAAAoS7hPwAAAABXdG28AAAAAKlY4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbPoI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARP8dvQAAAAB7lt2/AAAAAOxVzj0AAAAARvHcPwAAAABjFQU+AAAAAIwV/j8AAAAAxk3GPQAAAAB7stu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
  },
59
  "_episode_num": 0,
60
  "use_sde": true,
@@ -63,13 +63,13 @@
63
  "_stats_window_size": 100,
64
  "ep_info_buffer": {
65
  ":type:": "<class 'collections.deque'>",
66
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ9VaocaOxWMAWyUTegDjAF0lEdAspcXW07bL3V9lChoBkdAnplIbfgrH2gHTegDaAhHQLKXpMSbpeN1fZQoaAZHQJyUuFL39JloB03oA2gIR0CymLs10knkdX2UKGgGR0CeTLYl6Z6VaAdN6ANoCEdAsplXZoPCmHV9lChoBkdAmwyCgCfYjGgHTegDaAhHQLKdK+evpyJ1fZQoaAZHQJoDYJBw++xoB03oA2gIR0CynbbGNrCWdX2UKGgGR0CZf380DU3GaAdN6ANoCEdAsp7PA31jAnV9lChoBkdAm2Nz+717IGgHTegDaAhHQLKfajv/io91fZQoaAZHQJ9JPpRoAXFoB03oA2gIR0Cyo0XxaxHHdX2UKGgGR0CdKVqG1x82aAdN6ANoCEdAsqPKf/WDpXV9lChoBkdAnlq7cGkeqGgHTegDaAhHQLKk4Wvr4WV1fZQoaAZHQKArgbvPTodoB03oA2gIR0CypXvjOs1bdX2UKGgGR0CgWmKLS/j9aAdN6ANoCEdAsqliXt0FKXV9lChoBkdAn3sIvWYnfGgHTegDaAhHQLKp6hmXgLt1fZQoaAZHQJ+V0Lx7RfFoB03oA2gIR0Cyqvrsv7FbdX2UKGgGR0CgZUljVhCuaAdN6ANoCEdAsquRQGfPHHV9lChoBkdAnsm1opQUH2gHTegDaAhHQLKvbKoQ4CJ1fZQoaAZHQJ7B6Zv1lGxoB03oA2gIR0Cyr/b9deIEdX2UKGgGR0Ca3zb9If8uaAdN6ANoCEdAsrERZ+x4ZHV9lChoBkdAl0wI0hvBJ2gHTegDaAhHQLKxqGEPDpF1fZQoaAZHQJCHSgf2bodoB03oA2gIR0CytaTC+De1dX2UKGgGR0CQyQd9Ujs2aAdN6ANoCEdAsrYvQ2MsH3V9lChoBkdAkO4HsHB1tGgHTegDaAhHQLK3R9IPK+11fZQoaAZHQIqjZ2nsLORoB03oA2gIR0Cyt+ivX9R8dX2UKGgGR0COUbk4m1IAaAdN6ANoCEdAsrvMnJDE33V9lChoBkdAhAu9RrJr+GgHTegDaAhHQLK8WsQd0aJ1fZQoaAZHQIalMAmzByloB03oA2gIR0CyvXzBZZB+dX2UKGgGR0CBjluOS4e+aAdN6ANoCEdAsr4bJhfBvnV9lChoBkdAmEr7s8gZCWgHTegDaAhHQLLCFl7MPjJ1fZQoaAZHQIrxAMOPNmloB03oA2gIR0CywqX8n/kvdX2UKGgGR0CQII34sVcmaAdN6ANoCEdAssO+8J2MbXV9lChoBkdAkf/QnUlRg2gHTegDaAhHQLLEWB3A2yd1fZQoaAZHQHYd+JgsshBoB03oA2gIR0CyyDA6ySmqdX2UKGgGR0CajBuh9LHuaAdN6ANoCEdAssi4W1twaXV9lChoBkdAmqOGxhUip2gHTegDaAhHQLLJzMw1zhh1fZQoaAZHQJjp8tf5ULloB03oA2gIR0CyymqgM+eOdX2UKGgGR0CacyCf6Gg0aAdN6ANoCEdAss5i78Nx2nV9lChoBkdAnGv7IxQBP2gHTegDaAhHQLLO8UqQRwt1fZQoaAZHQJeSaCpWFOBoB03oA2gIR0Cy0BciGFi8dX2UKGgGR0CPZo0TlDF7aAdN6ANoCEdAstCw0Q9RrXV9lChoBkdAmk43C0ngHmgHTegDaAhHQLLUjYao/A11fZQoaAZHQJxV87LdN35oB03oA2gIR0Cy1ROoP07KdX2UKGgGR0Cc8RHM2WIHaAdN6ANoCEdAstYl+LFXJnV9lChoBkdAnNkJNO/L1WgHTegDaAhHQLLWumbLEDR1fZQoaAZHQJ7SmFCb+cZoB03oA2gIR0Cy2qIht+CsdX2UKGgGR0Cbu84nndO7aAdN6ANoCEdAstswMqjJuHV9lChoBkdAnRiL4etCA2gHTegDaAhHQLLcWsiB5HF1fZQoaAZHQJup+S0Sh8JoB03oA2gIR0Cy3P5pWV/udX2UKGgGR0CgWFgL7XQMaAdN6ANoCEdAsuDUW3z+WHV9lChoBkdAoAcc+3YthGgHTegDaAhHQLLhW6XjU/h1fZQoaAZHQKBDaeTV2A5oB03oA2gIR0Cy4nAC4jKQdX2UKGgGR0CeitRnvlU7aAdN6ANoCEdAsuML4h2W6nV9lChoBkdAnv0rMLWqcWgHTegDaAhHQLLm4pKSPlx1fZQoaAZHQKA6t1SOzY5oB03oA2gIR0Cy52mqYJE6dX2UKGgGR0CgP1wrDqGDaAdN6ANoCEdAsuiLVhCtzXV9lChoBkdAoDUR7kXDWWgHTegDaAhHQLLpKBWxQi11fZQoaAZHQKEfYjnmq5toB03oA2gIR0Cy7U5e7cwhdX2UKGgGR0CgjnwxWT5gaAdN6ANoCEdAsu3WCGvfTHV9lChoBkdAoNmzFAE+xGgHTegDaAhHQLLu6l5WzWx1fZQoaAZHQKBU48KXv6VoB03oA2gIR0Cy74D3M6ikdX2UKGgGR0CfpvMcZLqVaAdN6ANoCEdAsvNC9K28ZnV9lChoBkdAoF9VQAMlTmgHTegDaAhHQLLzyXbuc+d1fZQoaAZHQJtvZA9mpVFoB03oA2gIR0Cy9OMRDkU9dX2UKGgGR0CakdWoFV1faAdN6ANoCEdAsvV/FbVz63V9lChoBkdAnzTZFgDzRWgHTegDaAhHQLL5i1+iJwd1fZQoaAZHQJUA1YPoV21oB03oA2gIR0Cy+hZEpiI+dX2UKGgGR0CZ8KNmUW2xaAdN6ANoCEdAsvsznvDxb3V9lChoBkdAnblwRsdkrmgHTegDaAhHQLL70UTcqON1fZQoaAZHQJ6BkOrhispoB03oA2gIR0Cy/5BKUVzqdX2UKGgGR0Cci497F85TaAdN6ANoCEdAswAVOwgTy3V9lChoBkdAnPXikXUH6mgHTegDaAhHQLMBJd9Ujs51fZQoaAZHQJ5fXustCiRoB03oA2gIR0CzAbwUxmCidX2UKGgGR0ChTdqgIyCWaAdN6ANoCEdAswWjIQvpQnV9lChoBkdAn+HomgJ1JWgHTegDaAhHQLMGMQ1aW5Z1fZQoaAZHQJwtmiItUXJoB03oA2gIR0CzB0eOKfnPdX2UKGgGR0CeXz5GBnSOaAdN6ANoCEdAswfiOinHenV9lChoBkdAn5OyxRl6JWgHTegDaAhHQLMLuibUgB91fZQoaAZHQJuplucc2itoB03oA2gIR0CzDEKjnFHbdX2UKGgGR0Cg705NwiqyaAdN6ANoCEdAsw1YBzV+Z3V9lChoBkdAn2zVyaNMoWgHTegDaAhHQLMN7++/QBx1fZQoaAZHQKBLz/HYHxBoB03oA2gIR0CzEdQkHD77dX2UKGgGR0ChU0EYXO4YaAdN6ANoCEdAsxJmeHzpYHV9lChoBkdAoF1SUkfLcWgHTegDaAhHQLMTiYhdMTN1fZQoaAZHQKEK5fcer+5oB03oA2gIR0CzFCDGHYYjdX2UKGgGR0Cf4h3vhIe6aAdN6ANoCEdAsxf6EvkBCHV9lChoBkdAm3J/7SApa2gHTegDaAhHQLMYhFfReC11fZQoaAZHQKBDREUCaJBoB03oA2gIR0CzGaNedCmedX2UKGgGR0CgVzJswco6aAdN6ANoCEdAsxo6/8EV33V9lChoBkdAoLUmg8KXwGgHTegDaAhHQLMeD2h7E511fZQoaAZHQJrZeGEf1YhoB03oA2gIR0CzHp0384xUdX2UKGgGR0Cgo9QbMotuaAdN6ANoCEdAsx+8YdhiLHV9lChoBkdAoVyG8f3evmgHTegDaAhHQLMgYIT4+KV1fZQoaAZHQKEJ+DEFW4poB03oA2gIR0CzJFwGr0aqdX2UKGgGR0Cg76U5EMLGaAdN6ANoCEdAsyTmCmMwUXV9lChoBkdAnRCE2Hck+2gHTegDaAhHQLMmFyNn5BV1fZQoaAZHQJ3r2I7/4qRoB03oA2gIR0CzJrCKrJbMdX2UKGgGR0Cc8rIcR15jaAdN6ANoCEdAsyqOs8xKx3V9lChoBkdAnDbh1s+FDmgHTegDaAhHQLMrF9Brvb51fZQoaAZHQJtyalKsdT5oB03oA2gIR0CzLDe2qkuZdX2UKGgGR0CeDn4keIVNaAdN6ANoCEdAsyzX/EOy3XVlLg=="
67
  },
68
  "ep_success_buffer": {
69
  ":type:": "<class 'collections.deque'>",
70
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
  },
72
- "_n_updates": 93750,
73
  "n_steps": 8,
74
  "gamma": 0.99,
75
  "gae_lambda": 0.9,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc00b36af70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc00b36c040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc00b36c0d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc00b36c160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc00b36c1f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc00b36c280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc00b36c310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc00b36c3a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc00b36c430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc00b36c4c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc00b36c550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc00b36c5e0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fc00b36bf00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
32
  "weight_decay": 0
33
  }
34
  },
35
+ "num_timesteps": 5000000,
36
+ "_total_timesteps": 5000000,
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
+ "start_time": 1681846231572757174,
41
+ "learning_rate": 0.0003,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
44
  ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOuZI79J7Yw+dDv+PaxLsz8JcpI/EgnovnXn6z3Z6zw/9kUSP9PElr2LJQc/bycUQHucy78ye8w+Yh5cvgEKJcC3DQ28aw+uvGuRcr0vePo/vszMP39k8b68a5G+rhjpPxS23T+ms42/qD2MPojFk7/b39I+HC/xPsd7ib2z2XI+THrLu7kdxb+GIXa+KmUKPwMptT4Ivho/pQ0Iv1HwiD1c7pg+X7iqv0gdhT7xKZQ+hvO7Ps/Lgr4JKmW/mQ4vvx7AwD56MLY/nxvovdCRSr+8yxO/prONv6g9jD6IxZO/2ZzoPS+kyD5QcV48NycoPEovJT0vEvW/phDgvs59eD9lxyI/CcfDvnGGr77lo5Y/Wxcpv1zc8r/Q3Xs+UsOfPnqnCD99GqK/J5KZv7fSWbzkuzw/IXumP9q/Qb/ldVC/vMsTv6azjb+oPYw+iMWTvyX9zb2K9bg+alAyPZYh6T2pqCy8BPcCwJZ4C78kqms/GVvyPrCLQT6Uj6y+pqeqP41cZb+UWN6/sLHNPtAPyD5NRXU+7pebvuNhjL8KUwY/4YGEP/RGrT/Jh/K+4F0Dv7zLE7+ms42/qD2MPojFk7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
 
54
  },
55
  "_last_original_obs": {
56
  ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOeku2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjUGePQAAAAA+uuq/AAAAACtj+T0AAAAA33zfPwAAAADRHOS9AAAAAGjK2j8AAAAAm6ODPQAAAACGYu+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0a/mNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAgKjL0AAAAA/lTovwAAAABoBpu8AAAAAKSk4T8AAAAATQLfPQAAAAAyN+Q/AAAAAJjqBj4AAAAAv43ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHHNELYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAAmQo+AAAAAFGh4b8AAAAAI1iWPQAAAAC69es/AAAAAIpvrL0AAAAAg+nnPwAAAADhyEe9AAAAAJRM3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfUpW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADLV8vAAAAABZwuG/AAAAAKOhAr4AAAAAQKPvPwAAAADvnEM7AAAAAA096j8AAAAAa3KuPQAAAAA+8t6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
  },
59
  "_episode_num": 0,
60
  "use_sde": true,
 
63
  "_stats_window_size": 100,
64
  "ep_info_buffer": {
65
  ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKPH9sabWmSMAWyUTegDjAF0lEdAv0sxPtUn5XV9lChoBkdApDWC/0ulGmgHTegDaAhHQL9Lz3FUADJ1fZQoaAZHQKTQSKOT7l9oB03oA2gIR0C/TEjOTq0MdX2UKGgGR0ClPGXXiBGyaAdN6ANoCEdAv03y2d/ax3V9lChoBkdApKBPqgRK6GgHTegDaAhHQL9Rb/8EV351fZQoaAZHQKPu97yhBZ9oB03oA2gIR0C/UhLIxQBQdX2UKGgGR0Cj2hObiIcjaAdN6ANoCEdAv1KR8eCCjHV9lChoBkdApGidiz9jw2gHTegDaAhHQL9USNpudf91fZQoaAZHQKRlSsunMt9oB03oA2gIR0C/WAMlgMMJdX2UKGgGR0Cj83aFdszmaAdN6ANoCEdAv1ifvRZ2ZHV9lChoBkdApBLnVurIYGgHTegDaAhHQL9ZHUMoc711fZQoaAZHQKSBpaxHG0hoB03oA2gIR0C/WrdjCpFTdX2UKGgGR0CknRcCHRCyaAdN6ANoCEdAv14802tMf3V9lChoBkdApOEeYWtU42gHTegDaAhHQL9e4J9y9251fZQoaAZHQKRcXKmKqGVoB03oA2gIR0C/X1lbVz6rdX2UKGgGR0CkmKT101ZUaAdN6ANoCEdAv2D3v3JxN3V9lChoBkdApSJW0w8GLWgHTegDaAhHQL9kkRceKbd1fZQoaAZHQKUCmxoqTbFoB03oA2gIR0C/ZTx1xKg7dX2UKGgGR0ClDP+vpyIYaAdN6ANoCEdAv2W7wAlv63V9lChoBkdApPGPdqL0jGgHTegDaAhHQL9natozvZ11fZQoaAZHQKTku1TBInVoB03oA2gIR0C/ausUIsy0dX2UKGgGR0CkExsN2C/XaAdN6ANoCEdAv2uQSOBDonV9lChoBkdApKc6J0nw5WgHTegDaAhHQL9sDY6GQCF1fZQoaAZHQKR7sWweNkxoB03oA2gIR0C/bblar3j/dX2UKGgGR0Ckf3d0Rvm6aAdN6ANoCEdAv3FIbS7XhHV9lChoBkdApJXJ9w3o92gHTegDaAhHQL9x6vFFUhp1fZQoaAZHQKSHFsjVx0doB03oA2gIR0C/cmpQxesxdX2UKGgGR0ClRkqgIyCWaAdN6ANoCEdAv3QTp0OmSHV9lChoBkdApYMJyIYWL2gHTegDaAhHQL93i2itaIN1fZQoaAZHQKTicLbYbsFoB03oA2gIR0C/eC5KjBVNdX2UKGgGR0Ck6mSWZ7XyaAdN6ANoCEdAv3itXYDkl3V9lChoBkdApRg8vysjmmgHTegDaAhHQL96X+zMRpV1fZQoaAZHQKRtg7JW/8FoB03oA2gIR0C/fhPUWl/IdX2UKGgGR0ClUhingpBpaAdN6ANoCEdAv365K3/gi3V9lChoBkdApYpv4j8k2WgHTegDaAhHQL9/OGipNsZ1fZQoaAZHQKTgve3QUpNoB03oA2gIR0C/gOTyjHn2dX2UKGgGR0ClNyV9nbqRaAdN6ANoCEdAv4RYBU70WnV9lChoBkdApYhOSSvC/GgHTegDaAhHQL+E+Cih37l1fZQoaAZHQKWXJKGtZFJoB03oA2gIR0C/hXFLOAy3dX2UKGgGR0ClMZltbcGkaAdN6ANoCEdAv4cNVFQVK3V9lChoBkdApRi32kBS1mgHTegDaAhHQL+Ke8QqZtx1fZQoaAZHQKUqugPEsJ9oB03oA2gIR0C/iyK8Yht+dX2UKGgGR0CkaqqW9lEraAdN6ANoCEdAv4ue1KGtZHV9lChoBkdApKAue18b72gHTegDaAhHQL+NSgam4y51fZQoaAZHQKNqFWWhRIloB03oA2gIR0C/kNjx0+1SdX2UKGgGR0CjbVzgdfb9aAdN6ANoCEdAv5F7nzQNTnV9lChoBkdAo3lc9U0el2gHTegDaAhHQL+R+8a4tpV1fZQoaAZHQKRMEh1Tzd1oB03oA2gIR0C/k6XHR1HOdX2UKGgGR0ClgxwAuIykaAdN6ANoCEdAv5c3cEeQuHV9lChoBkdApczMBuGbkWgHTegDaAhHQL+X2YBvJil1fZQoaAZHQKW6hI8yN4toB03oA2gIR0C/mFafe1rqdX2UKGgGR0CmAEu3DvVmaAdN6ANoCEdAv5nzQzDXOHV9lChoBkdApkLgj2SMcmgHTegDaAhHQL+dUdIXj2l1fZQoaAZHQKYL9bwBo25oB03oA2gIR0C/ne8ohIOIdX2UKGgGR0CmVaxT850baAdN6ANoCEdAv55m8M/hVHV9lChoBkdApZLuqkuYhWgHTegDaAhHQL+gAXhfjS51fZQoaAZHQKXcwO/cnE5oB03oA2gIR0C/o5om5UcXdX2UKGgGR0CmCeIis4kvaAdN6ANoCEdAv6RE7p3X7XV9lChoBkdAplvadBjWkWgHTegDaAhHQL+k1bwBo251fZQoaAZHQKXqkr0aqCJoB03oA2gIR0C/ppG1x82KdX2UKGgGR0Cl90qzZ6D5aAdN6ANoCEdAv6occLjPwHV9lChoBkdAo8KKI55qumgHTegDaAhHQL+qxAYYR/V1fZQoaAZHQKT7yqnWJ79oB03oA2gIR0C/q0NKqXF+dX2UKGgGR0Clv7NmDlHSaAdN6ANoCEdAv6zn8BMi8nV9lChoBkdApXhnnU2DQWgHTegDaAhHQL+wbCdjG1h1fZQoaAZHQKXaHtZ3cHpoB03oA2gIR0C/sRH3L3bmdX2UKGgGR0ClyP8BMi8naAdN6ANoCEdAv7GR2xIJ7nV9lChoBkdApfKhhttQ9GgHTegDaAhHQL+zOpYcNpd1fZQoaAZHQKZk3YI0IkZoB03oA2gIR0C/tqm9xp+MdX2UKGgGR0Cl9ESpJf6XaAdN6ANoCEdAv7dObG3nZHV9lChoBkdAplPHb48EFGgHTegDaAhHQL+3z/qPfbd1fZQoaAZHQKWK08EFGG5oB03oA2gIR0C/uYLR8c+8dX2UKGgGR0ClshbONYKZaAdN6ANoCEdAv70WxLTQV3V9lChoBkdApKRRyU9py2gHTegDaAhHQL+9wbEP1+R1fZQoaAZHQKTYzmCAc1hoB03oA2gIR0C/vkWmk30gdX2UKGgGR0ClH04gieNDaAdN6ANoCEdAv8AAB4lhPXV9lChoBkdApQX+Hck+o2gHTegDaAhHQL/DcmgrYoR1fZQoaAZHQKP7o56t1ZFoB03oA2gIR0C/xBMnRb8ndX2UKGgGR0CkxfXTd+G5aAdN6ANoCEdAv8SRWsA/93V9lChoBkdApNnXC9AX22gHTegDaAhHQL/GNyE+Pil1fZQoaAZHQKR3/BGhEjRoB03oA2gIR0C/ybQBT4tZdX2UKGgGR0CkoZw4bS7YaAdN6ANoCEdAv8peR+z+m3V9lChoBkdApZU8A3kxRGgHTegDaAhHQL/K29Sde6Z1fZQoaAZHQKVtXYA80UJoB03oA2gIR0C/zJ+tSydGdX2UKGgGR0ClsIjOs1baaAdN6ANoCEdAv9AdOclPanV9lChoBkdApHHD0nPVu2gHTegDaAhHQL/QwfO2RaJ1fZQoaAZHQKTpREpiI+JoB03oA2gIR0C/0UIgeRxMdX2UKGgGR0CkfDs7lq8EaAdN6ANoCEdAv9L0jX4CZHV9lChoBkdApX4uKXOW0WgHTegDaAhHQL/WhdIXj2l1fZQoaAZHQKQd7P557gNoB03oA2gIR0C/1yt0eU6gdX2UKGgGR0ClUaQ7kn1GaAdN6ANoCEdAv9evKSxJNHV9lChoBkdApLO5Rjz7M2gHTegDaAhHQL/Zbh/RVp91fZQoaAZHQKRBbZgXuVpoB03oA2gIR0C/3N0hib2EdX2UKGgGR0CkmZnXEqDsaAdN6ANoCEdAv92EmJFb3XV9lChoBkdApUPEKVpsXWgHTegDaAhHQL/eAezD4xl1fZQoaAZHQKXqh4N7SiNoB03oA2gIR0C/36h7/n4gdX2UKGgGR0CloimyxA0LaAdN6ANoCEdAv+Mz9ycTanV9lChoBkdApiQrxgAp8WgHTegDaAhHQL/j3vUjLSx1fZQoaAZHQKUtmyKNyYJoB03oA2gIR0C/5GSM1jy4dX2UKGgGR0ClqT/TkQwsaAdN6ANoCEdAv+Y0BFNL13VlLg=="
67
  },
68
  "ep_success_buffer": {
69
  ":type:": "<class 'collections.deque'>",
70
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
  },
72
+ "_n_updates": 156250,
73
  "n_steps": 8,
74
  "gamma": 0.99,
75
  "gae_lambda": 0.9,
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c9d492a2783219994935c8085d41de375302768acfaefd366de624493548666f
3
  size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:584b48b293520c3cf24091d1425758d866715a5056d9b422c319f35a9754b3af
3
  size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2ebc5d4ace866d6c7d0a1f53e192dda2a6e1362b88d67ac33083c9a25b420cb8
3
  size 56894
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45cef87278f1a4f677683845f336ad16a37140e152931e41a6d1331e9f6ca52e
3
  size 56894
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8d8fc04790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8d8fc04820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8d8fc048b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8d8fc04940>", "_build": "<function ActorCriticPolicy._build at 0x7f8d8fc049d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8d8fc04a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8d8fc04af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8d8fc04b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8d8fc04c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8d8fc04ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8d8fc04d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8d8fc04dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8d8fc05b80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681666822493871529, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAD6M4j1yXkU+Tr4DP7VekT/EnwW/JuESPwVWJ70/1h2/3EB9v0f7I7+Il3q/XdB7PY5jiD5WwYA/qCn8PtJoxz/kIiq9SmC5P1SQIz+Sqk+/ctiGvn8Ztb/a6kQ/fgbaPm6wYb8OuQU/oQvDv55+hD9SZp4+AyaiP1H4/byFzNc/1FO4vxX2jT+72DI/rI3fvsk2S7+cDe8/vUzLP1zMSz5yrpq+MDzvvzaYI766i1Q+fUOhvzBPlr8eVTY/Ai6XvAENF75D6YQ/btZAvz28OL/aMJE/SQv1v3sAKD/UUHe/KaMRP8p1Qb6QePs+57N9P2iRl7+ARba/5W4KP/P5Db9gBgU/SOSgv0ShuD9IBX2/59CNvzue2D6O1EG/Eh4MP0iX87+TshC9IFg3P5zUXr2FIxg/rVK8Pq7g2L6y3JA+2jCRPw65BT97ACg/1FB3v846sr4/iL6+zOHhPmN/7D4DF9y/s0x7PjoXeT4O5dA9i1U/vwA4McC/6A+/SF0PwKSxhb+Ml9O9zIiBvg1Btj9qH1u/Qu65PZCtNj+/+828vlhdvUyH/L+BWoi9HAtAP26wYb8OuQU/oQvDv55+hD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABQVL42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApNIOPQAAAADQ7fq/AAAAAHm73T0AAAAAyD/nPwAAAACvn+g9AAAAABxH4T8AAAAAbjttvQAAAABns+2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUzzdMwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJDnjzwAAAAAq9DavwAAAADQb4I8AAAAADfg3T8AAAAAdBsSPgAAAAASFf0/AAAAAODY/j0AAAAAxwYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJCRYjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICMCCO8AAAAAM7M7b8AAAAAcBWKPQAAAADjbeo/AAAAAORYXT0AAAAAoS7hPwAAAABXdG28AAAAAKlY4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbPoI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARP8dvQAAAAB7lt2/AAAAAOxVzj0AAAAARvHcPwAAAABjFQU+AAAAAIwV/j8AAAAAxk3GPQAAAAB7stu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ9VaocaOxWMAWyUTegDjAF0lEdAspcXW07bL3V9lChoBkdAnplIbfgrH2gHTegDaAhHQLKXpMSbpeN1fZQoaAZHQJyUuFL39JloB03oA2gIR0CymLs10knkdX2UKGgGR0CeTLYl6Z6VaAdN6ANoCEdAsplXZoPCmHV9lChoBkdAmwyCgCfYjGgHTegDaAhHQLKdK+evpyJ1fZQoaAZHQJoDYJBw++xoB03oA2gIR0CynbbGNrCWdX2UKGgGR0CZf380DU3GaAdN6ANoCEdAsp7PA31jAnV9lChoBkdAm2Nz+717IGgHTegDaAhHQLKfajv/io91fZQoaAZHQJ9JPpRoAXFoB03oA2gIR0Cyo0XxaxHHdX2UKGgGR0CdKVqG1x82aAdN6ANoCEdAsqPKf/WDpXV9lChoBkdAnlq7cGkeqGgHTegDaAhHQLKk4Wvr4WV1fZQoaAZHQKArgbvPTodoB03oA2gIR0CypXvjOs1bdX2UKGgGR0CgWmKLS/j9aAdN6ANoCEdAsqliXt0FKXV9lChoBkdAn3sIvWYnfGgHTegDaAhHQLKp6hmXgLt1fZQoaAZHQJ+V0Lx7RfFoB03oA2gIR0Cyqvrsv7FbdX2UKGgGR0CgZUljVhCuaAdN6ANoCEdAsquRQGfPHHV9lChoBkdAnsm1opQUH2gHTegDaAhHQLKvbKoQ4CJ1fZQoaAZHQJ7B6Zv1lGxoB03oA2gIR0Cyr/b9deIEdX2UKGgGR0Ca3zb9If8uaAdN6ANoCEdAsrERZ+x4ZHV9lChoBkdAl0wI0hvBJ2gHTegDaAhHQLKxqGEPDpF1fZQoaAZHQJCHSgf2bodoB03oA2gIR0CytaTC+De1dX2UKGgGR0CQyQd9Ujs2aAdN6ANoCEdAsrYvQ2MsH3V9lChoBkdAkO4HsHB1tGgHTegDaAhHQLK3R9IPK+11fZQoaAZHQIqjZ2nsLORoB03oA2gIR0Cyt+ivX9R8dX2UKGgGR0COUbk4m1IAaAdN6ANoCEdAsrvMnJDE33V9lChoBkdAhAu9RrJr+GgHTegDaAhHQLK8WsQd0aJ1fZQoaAZHQIalMAmzByloB03oA2gIR0CyvXzBZZB+dX2UKGgGR0CBjluOS4e+aAdN6ANoCEdAsr4bJhfBvnV9lChoBkdAmEr7s8gZCWgHTegDaAhHQLLCFl7MPjJ1fZQoaAZHQIrxAMOPNmloB03oA2gIR0CywqX8n/kvdX2UKGgGR0CQII34sVcmaAdN6ANoCEdAssO+8J2MbXV9lChoBkdAkf/QnUlRg2gHTegDaAhHQLLEWB3A2yd1fZQoaAZHQHYd+JgsshBoB03oA2gIR0CyyDA6ySmqdX2UKGgGR0CajBuh9LHuaAdN6ANoCEdAssi4W1twaXV9lChoBkdAmqOGxhUip2gHTegDaAhHQLLJzMw1zhh1fZQoaAZHQJjp8tf5ULloB03oA2gIR0CyymqgM+eOdX2UKGgGR0CacyCf6Gg0aAdN6ANoCEdAss5i78Nx2nV9lChoBkdAnGv7IxQBP2gHTegDaAhHQLLO8UqQRwt1fZQoaAZHQJeSaCpWFOBoB03oA2gIR0Cy0BciGFi8dX2UKGgGR0CPZo0TlDF7aAdN6ANoCEdAstCw0Q9RrXV9lChoBkdAmk43C0ngHmgHTegDaAhHQLLUjYao/A11fZQoaAZHQJxV87LdN35oB03oA2gIR0Cy1ROoP07KdX2UKGgGR0Cc8RHM2WIHaAdN6ANoCEdAstYl+LFXJnV9lChoBkdAnNkJNO/L1WgHTegDaAhHQLLWumbLEDR1fZQoaAZHQJ7SmFCb+cZoB03oA2gIR0Cy2qIht+CsdX2UKGgGR0Cbu84nndO7aAdN6ANoCEdAstswMqjJuHV9lChoBkdAnRiL4etCA2gHTegDaAhHQLLcWsiB5HF1fZQoaAZHQJup+S0Sh8JoB03oA2gIR0Cy3P5pWV/udX2UKGgGR0CgWFgL7XQMaAdN6ANoCEdAsuDUW3z+WHV9lChoBkdAoAcc+3YthGgHTegDaAhHQLLhW6XjU/h1fZQoaAZHQKBDaeTV2A5oB03oA2gIR0Cy4nAC4jKQdX2UKGgGR0CeitRnvlU7aAdN6ANoCEdAsuML4h2W6nV9lChoBkdAnv0rMLWqcWgHTegDaAhHQLLm4pKSPlx1fZQoaAZHQKA6t1SOzY5oB03oA2gIR0Cy52mqYJE6dX2UKGgGR0CgP1wrDqGDaAdN6ANoCEdAsuiLVhCtzXV9lChoBkdAoDUR7kXDWWgHTegDaAhHQLLpKBWxQi11fZQoaAZHQKEfYjnmq5toB03oA2gIR0Cy7U5e7cwhdX2UKGgGR0CgjnwxWT5gaAdN6ANoCEdAsu3WCGvfTHV9lChoBkdAoNmzFAE+xGgHTegDaAhHQLLu6l5WzWx1fZQoaAZHQKBU48KXv6VoB03oA2gIR0Cy74D3M6ikdX2UKGgGR0CfpvMcZLqVaAdN6ANoCEdAsvNC9K28ZnV9lChoBkdAoF9VQAMlTmgHTegDaAhHQLLzyXbuc+d1fZQoaAZHQJtvZA9mpVFoB03oA2gIR0Cy9OMRDkU9dX2UKGgGR0CakdWoFV1faAdN6ANoCEdAsvV/FbVz63V9lChoBkdAnzTZFgDzRWgHTegDaAhHQLL5i1+iJwd1fZQoaAZHQJUA1YPoV21oB03oA2gIR0Cy+hZEpiI+dX2UKGgGR0CZ8KNmUW2xaAdN6ANoCEdAsvsznvDxb3V9lChoBkdAnblwRsdkrmgHTegDaAhHQLL70UTcqON1fZQoaAZHQJ6BkOrhispoB03oA2gIR0Cy/5BKUVzqdX2UKGgGR0Cci497F85TaAdN6ANoCEdAswAVOwgTy3V9lChoBkdAnPXikXUH6mgHTegDaAhHQLMBJd9Ujs51fZQoaAZHQJ5fXustCiRoB03oA2gIR0CzAbwUxmCidX2UKGgGR0ChTdqgIyCWaAdN6ANoCEdAswWjIQvpQnV9lChoBkdAn+HomgJ1JWgHTegDaAhHQLMGMQ1aW5Z1fZQoaAZHQJwtmiItUXJoB03oA2gIR0CzB0eOKfnPdX2UKGgGR0CeXz5GBnSOaAdN6ANoCEdAswfiOinHenV9lChoBkdAn5OyxRl6JWgHTegDaAhHQLMLuibUgB91fZQoaAZHQJuplucc2itoB03oA2gIR0CzDEKjnFHbdX2UKGgGR0Cg705NwiqyaAdN6ANoCEdAsw1YBzV+Z3V9lChoBkdAn2zVyaNMoWgHTegDaAhHQLMN7++/QBx1fZQoaAZHQKBLz/HYHxBoB03oA2gIR0CzEdQkHD77dX2UKGgGR0ChU0EYXO4YaAdN6ANoCEdAsxJmeHzpYHV9lChoBkdAoF1SUkfLcWgHTegDaAhHQLMTiYhdMTN1fZQoaAZHQKEK5fcer+5oB03oA2gIR0CzFCDGHYYjdX2UKGgGR0Cf4h3vhIe6aAdN6ANoCEdAsxf6EvkBCHV9lChoBkdAm3J/7SApa2gHTegDaAhHQLMYhFfReC11fZQoaAZHQKBDREUCaJBoB03oA2gIR0CzGaNedCmedX2UKGgGR0CgVzJswco6aAdN6ANoCEdAsxo6/8EV33V9lChoBkdAoLUmg8KXwGgHTegDaAhHQLMeD2h7E511fZQoaAZHQJrZeGEf1YhoB03oA2gIR0CzHp0384xUdX2UKGgGR0Cgo9QbMotuaAdN6ANoCEdAsx+8YdhiLHV9lChoBkdAoVyG8f3evmgHTegDaAhHQLMgYIT4+KV1fZQoaAZHQKEJ+DEFW4poB03oA2gIR0CzJFwGr0aqdX2UKGgGR0Cg76U5EMLGaAdN6ANoCEdAsyTmCmMwUXV9lChoBkdAnRCE2Hck+2gHTegDaAhHQLMmFyNn5BV1fZQoaAZHQJ3r2I7/4qRoB03oA2gIR0CzJrCKrJbMdX2UKGgGR0Cc8rIcR15jaAdN6ANoCEdAsyqOs8xKx3V9lChoBkdAnDbh1s+FDmgHTegDaAhHQLMrF9Brvb51fZQoaAZHQJtyalKsdT5oB03oA2gIR0CzLDe2qkuZdX2UKGgGR0CeDn4keIVNaAdN6ANoCEdAsyzX/EOy3XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc00b36af70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc00b36c040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc00b36c0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc00b36c160>", "_build": "<function ActorCriticPolicy._build at 0x7fc00b36c1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc00b36c280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc00b36c310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc00b36c3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc00b36c430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc00b36c4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc00b36c550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc00b36c5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc00b36bf00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 5000000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681846231572757174, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOuZI79J7Yw+dDv+PaxLsz8JcpI/EgnovnXn6z3Z6zw/9kUSP9PElr2LJQc/bycUQHucy78ye8w+Yh5cvgEKJcC3DQ28aw+uvGuRcr0vePo/vszMP39k8b68a5G+rhjpPxS23T+ms42/qD2MPojFk7/b39I+HC/xPsd7ib2z2XI+THrLu7kdxb+GIXa+KmUKPwMptT4Ivho/pQ0Iv1HwiD1c7pg+X7iqv0gdhT7xKZQ+hvO7Ps/Lgr4JKmW/mQ4vvx7AwD56MLY/nxvovdCRSr+8yxO/prONv6g9jD6IxZO/2ZzoPS+kyD5QcV48NycoPEovJT0vEvW/phDgvs59eD9lxyI/CcfDvnGGr77lo5Y/Wxcpv1zc8r/Q3Xs+UsOfPnqnCD99GqK/J5KZv7fSWbzkuzw/IXumP9q/Qb/ldVC/vMsTv6azjb+oPYw+iMWTvyX9zb2K9bg+alAyPZYh6T2pqCy8BPcCwJZ4C78kqms/GVvyPrCLQT6Uj6y+pqeqP41cZb+UWN6/sLHNPtAPyD5NRXU+7pebvuNhjL8KUwY/4YGEP/RGrT/Jh/K+4F0Dv7zLE7+ms42/qD2MPojFk7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOeku2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjUGePQAAAAA+uuq/AAAAACtj+T0AAAAA33zfPwAAAADRHOS9AAAAAGjK2j8AAAAAm6ODPQAAAACGYu+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0a/mNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAgKjL0AAAAA/lTovwAAAABoBpu8AAAAAKSk4T8AAAAATQLfPQAAAAAyN+Q/AAAAAJjqBj4AAAAAv43ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHHNELYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAAmQo+AAAAAFGh4b8AAAAAI1iWPQAAAAC69es/AAAAAIpvrL0AAAAAg+nnPwAAAADhyEe9AAAAAJRM3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfUpW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADLV8vAAAAABZwuG/AAAAAKOhAr4AAAAAQKPvPwAAAADvnEM7AAAAAA096j8AAAAAa3KuPQAAAAA+8t6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKPH9sabWmSMAWyUTegDjAF0lEdAv0sxPtUn5XV9lChoBkdApDWC/0ulGmgHTegDaAhHQL9Lz3FUADJ1fZQoaAZHQKTQSKOT7l9oB03oA2gIR0C/TEjOTq0MdX2UKGgGR0ClPGXXiBGyaAdN6ANoCEdAv03y2d/ax3V9lChoBkdApKBPqgRK6GgHTegDaAhHQL9Rb/8EV351fZQoaAZHQKPu97yhBZ9oB03oA2gIR0C/UhLIxQBQdX2UKGgGR0Cj2hObiIcjaAdN6ANoCEdAv1KR8eCCjHV9lChoBkdApGidiz9jw2gHTegDaAhHQL9USNpudf91fZQoaAZHQKRlSsunMt9oB03oA2gIR0C/WAMlgMMJdX2UKGgGR0Cj83aFdszmaAdN6ANoCEdAv1ifvRZ2ZHV9lChoBkdApBLnVurIYGgHTegDaAhHQL9ZHUMoc711fZQoaAZHQKSBpaxHG0hoB03oA2gIR0C/WrdjCpFTdX2UKGgGR0CknRcCHRCyaAdN6ANoCEdAv14802tMf3V9lChoBkdApOEeYWtU42gHTegDaAhHQL9e4J9y9251fZQoaAZHQKRcXKmKqGVoB03oA2gIR0C/X1lbVz6rdX2UKGgGR0CkmKT101ZUaAdN6ANoCEdAv2D3v3JxN3V9lChoBkdApSJW0w8GLWgHTegDaAhHQL9kkRceKbd1fZQoaAZHQKUCmxoqTbFoB03oA2gIR0C/ZTx1xKg7dX2UKGgGR0ClDP+vpyIYaAdN6ANoCEdAv2W7wAlv63V9lChoBkdApPGPdqL0jGgHTegDaAhHQL9natozvZ11fZQoaAZHQKTku1TBInVoB03oA2gIR0C/ausUIsy0dX2UKGgGR0CkExsN2C/XaAdN6ANoCEdAv2uQSOBDonV9lChoBkdApKc6J0nw5WgHTegDaAhHQL9sDY6GQCF1fZQoaAZHQKR7sWweNkxoB03oA2gIR0C/bblar3j/dX2UKGgGR0Ckf3d0Rvm6aAdN6ANoCEdAv3FIbS7XhHV9lChoBkdApJXJ9w3o92gHTegDaAhHQL9x6vFFUhp1fZQoaAZHQKSHFsjVx0doB03oA2gIR0C/cmpQxesxdX2UKGgGR0ClRkqgIyCWaAdN6ANoCEdAv3QTp0OmSHV9lChoBkdApYMJyIYWL2gHTegDaAhHQL93i2itaIN1fZQoaAZHQKTicLbYbsFoB03oA2gIR0C/eC5KjBVNdX2UKGgGR0Ck6mSWZ7XyaAdN6ANoCEdAv3itXYDkl3V9lChoBkdApRg8vysjmmgHTegDaAhHQL96X+zMRpV1fZQoaAZHQKRtg7JW/8FoB03oA2gIR0C/fhPUWl/IdX2UKGgGR0ClUhingpBpaAdN6ANoCEdAv365K3/gi3V9lChoBkdApYpv4j8k2WgHTegDaAhHQL9/OGipNsZ1fZQoaAZHQKTgve3QUpNoB03oA2gIR0C/gOTyjHn2dX2UKGgGR0ClNyV9nbqRaAdN6ANoCEdAv4RYBU70WnV9lChoBkdApYhOSSvC/GgHTegDaAhHQL+E+Cih37l1fZQoaAZHQKWXJKGtZFJoB03oA2gIR0C/hXFLOAy3dX2UKGgGR0ClMZltbcGkaAdN6ANoCEdAv4cNVFQVK3V9lChoBkdApRi32kBS1mgHTegDaAhHQL+Ke8QqZtx1fZQoaAZHQKUqugPEsJ9oB03oA2gIR0C/iyK8Yht+dX2UKGgGR0CkaqqW9lEraAdN6ANoCEdAv4ue1KGtZHV9lChoBkdApKAue18b72gHTegDaAhHQL+NSgam4y51fZQoaAZHQKNqFWWhRIloB03oA2gIR0C/kNjx0+1SdX2UKGgGR0CjbVzgdfb9aAdN6ANoCEdAv5F7nzQNTnV9lChoBkdAo3lc9U0el2gHTegDaAhHQL+R+8a4tpV1fZQoaAZHQKRMEh1Tzd1oB03oA2gIR0C/k6XHR1HOdX2UKGgGR0ClgxwAuIykaAdN6ANoCEdAv5c3cEeQuHV9lChoBkdApczMBuGbkWgHTegDaAhHQL+X2YBvJil1fZQoaAZHQKW6hI8yN4toB03oA2gIR0C/mFafe1rqdX2UKGgGR0CmAEu3DvVmaAdN6ANoCEdAv5nzQzDXOHV9lChoBkdApkLgj2SMcmgHTegDaAhHQL+dUdIXj2l1fZQoaAZHQKYL9bwBo25oB03oA2gIR0C/ne8ohIOIdX2UKGgGR0CmVaxT850baAdN6ANoCEdAv55m8M/hVHV9lChoBkdApZLuqkuYhWgHTegDaAhHQL+gAXhfjS51fZQoaAZHQKXcwO/cnE5oB03oA2gIR0C/o5om5UcXdX2UKGgGR0CmCeIis4kvaAdN6ANoCEdAv6RE7p3X7XV9lChoBkdAplvadBjWkWgHTegDaAhHQL+k1bwBo251fZQoaAZHQKXqkr0aqCJoB03oA2gIR0C/ppG1x82KdX2UKGgGR0Cl90qzZ6D5aAdN6ANoCEdAv6occLjPwHV9lChoBkdAo8KKI55qumgHTegDaAhHQL+qxAYYR/V1fZQoaAZHQKT7yqnWJ79oB03oA2gIR0C/q0NKqXF+dX2UKGgGR0Clv7NmDlHSaAdN6ANoCEdAv6zn8BMi8nV9lChoBkdApXhnnU2DQWgHTegDaAhHQL+wbCdjG1h1fZQoaAZHQKXaHtZ3cHpoB03oA2gIR0C/sRH3L3bmdX2UKGgGR0ClyP8BMi8naAdN6ANoCEdAv7GR2xIJ7nV9lChoBkdApfKhhttQ9GgHTegDaAhHQL+zOpYcNpd1fZQoaAZHQKZk3YI0IkZoB03oA2gIR0C/tqm9xp+MdX2UKGgGR0Cl9ESpJf6XaAdN6ANoCEdAv7dObG3nZHV9lChoBkdAplPHb48EFGgHTegDaAhHQL+3z/qPfbd1fZQoaAZHQKWK08EFGG5oB03oA2gIR0C/uYLR8c+8dX2UKGgGR0ClshbONYKZaAdN6ANoCEdAv70WxLTQV3V9lChoBkdApKRRyU9py2gHTegDaAhHQL+9wbEP1+R1fZQoaAZHQKTYzmCAc1hoB03oA2gIR0C/vkWmk30gdX2UKGgGR0ClH04gieNDaAdN6ANoCEdAv8AAB4lhPXV9lChoBkdApQX+Hck+o2gHTegDaAhHQL/DcmgrYoR1fZQoaAZHQKP7o56t1ZFoB03oA2gIR0C/xBMnRb8ndX2UKGgGR0CkxfXTd+G5aAdN6ANoCEdAv8SRWsA/93V9lChoBkdApNnXC9AX22gHTegDaAhHQL/GNyE+Pil1fZQoaAZHQKR3/BGhEjRoB03oA2gIR0C/ybQBT4tZdX2UKGgGR0CkoZw4bS7YaAdN6ANoCEdAv8peR+z+m3V9lChoBkdApZU8A3kxRGgHTegDaAhHQL/K29Sde6Z1fZQoaAZHQKVtXYA80UJoB03oA2gIR0C/zJ+tSydGdX2UKGgGR0ClsIjOs1baaAdN6ANoCEdAv9AdOclPanV9lChoBkdApHHD0nPVu2gHTegDaAhHQL/QwfO2RaJ1fZQoaAZHQKTpREpiI+JoB03oA2gIR0C/0UIgeRxMdX2UKGgGR0CkfDs7lq8EaAdN6ANoCEdAv9L0jX4CZHV9lChoBkdApX4uKXOW0WgHTegDaAhHQL/WhdIXj2l1fZQoaAZHQKQd7P557gNoB03oA2gIR0C/1yt0eU6gdX2UKGgGR0ClUaQ7kn1GaAdN6ANoCEdAv9evKSxJNHV9lChoBkdApLO5Rjz7M2gHTegDaAhHQL/Zbh/RVp91fZQoaAZHQKRBbZgXuVpoB03oA2gIR0C/3N0hib2EdX2UKGgGR0CkmZnXEqDsaAdN6ANoCEdAv92EmJFb3XV9lChoBkdApUPEKVpsXWgHTegDaAhHQL/eAezD4xl1fZQoaAZHQKXqh4N7SiNoB03oA2gIR0C/36h7/n4gdX2UKGgGR0CloimyxA0LaAdN6ANoCEdAv+Mz9ycTanV9lChoBkdApiQrxgAp8WgHTegDaAhHQL/j3vUjLSx1fZQoaAZHQKUtmyKNyYJoB03oA2gIR0C/5GSM1jy4dX2UKGgGR0ClqT/TkQwsaAdN6ANoCEdAv+Y0BFNL13VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 156250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9a4dcf37c5696263a705b64f3af35e164eaf97d0fe5e918b934d97d15cdd3491
3
- size 1108986
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a7aa0b04bc8b24156e4568a6b685e94c458355b979375d0be20545c70998295
3
+ size 1335814
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1781.4749269756721, "std_reward": 144.70854067676643, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-16T19:04:17.865569"}
 
1
+ {"mean_reward": 2836.2932393856054, "std_reward": 12.24367590833662, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-18T21:47:19.734499"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:be81e0f191998ac58fbe9d7a418c2bd48b074c05773a7ce422eacd00b25e8642
3
  size 2170
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca958fa5ecaf4fdddc2f528703acba4436e9cc8fcc57811a7f012888bd54fb97
3
  size 2170