Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +101 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.21 +/- 0.15
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4c0e257b728ed69a7307c6c2eb52e62fac5105680a5f1e69ad4f26d93fcc6ec
|
3 |
+
size 106917
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bcb219fbd90>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7bcb219f3380>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVlAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"net_arch": [
|
16 |
+
64,
|
17 |
+
64
|
18 |
+
],
|
19 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
20 |
+
"optimizer_kwargs": {
|
21 |
+
"alpha": 0.99,
|
22 |
+
"eps": 1e-05,
|
23 |
+
"weight_decay": 0
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"num_timesteps": 1000000,
|
27 |
+
"_total_timesteps": 1000000,
|
28 |
+
"_num_timesteps_at_start": 0,
|
29 |
+
"seed": null,
|
30 |
+
"action_noise": null,
|
31 |
+
"start_time": 1694961159022572296,
|
32 |
+
"learning_rate": 0.001,
|
33 |
+
"tensorboard_log": null,
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADAq+v6fBz7+FcUc/niHgv8nVHsBKeiDAXi6rPt4q0Lvwz/E+Xi6rPt4q0Lvwz/E+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8eQDv7Ny0b9sbmg/zP2avwfwjr+Tv7S/w25tP/7N5r5132Q+bZvrvviWgD+LBjY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAMCr6/p8HPv4VxRz96kdW+ADSDv7DU3T+eIeC/ydUewEp6IMCUjau/tHGFvwBMcb9eLqs+3irQu/DP8T5Wn/k+jrW3u6clyD5eLqs+3irQu/DP8T5Wn/k+jrW3u6clyD6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[-1.4846816 -1.6230973 0.7790759 ]\n [-1.7510259 -2.4817984 -2.507464 ]\n [ 0.33433813 -0.00635277 0.47228956]\n [ 0.33433813 -0.00635277 0.47228956]]",
|
38 |
+
"desired_goal": "[[-0.5152121 -1.6363128 0.9079349 ]\n [-1.2108703 -1.1167 -1.4120964 ]\n [ 0.92747134 -0.45079035 0.22350867]\n [-0.46017018 1.0046072 0.71103734]]",
|
39 |
+
"observation": "[[-1.4846816 -1.6230973 0.7790759 -0.41712552 -1.0250244 1.7330532 ]\n [-1.7510259 -2.4817984 -2.507464 -1.3402581 -1.0425324 -0.9425659 ]\n [ 0.33433813 -0.00635277 0.47228956 0.48754376 -0.00560636 0.39091226]\n [ 0.33433813 -0.00635277 0.47228956 0.48754376 -0.00560636 0.39091226]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMbKnPRauwL2n8Xg9atFbPK78kjttWnE98ecPvcXp2b236A0+49oOPteDsT0XTOg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.08188284 -0.09408204 0.06077733]\n [ 0.01341663 0.00448569 0.05892413]\n [-0.03513331 -0.10640291 0.13858305]\n [ 0.13950686 0.08667725 0.11342638]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8XTAnDziCKMAWyUSwKMAXSUR0CrNAc9wFTvdX2UKGgGR7+1RqGlANXpaAdLAmgIR0CrM9jn/1g6dX2UKGgGR7/N2Bas6q82aAdLA2gIR0CrM57MX7+DdX2UKGgGR7/QXzlLeyiVaAdLA2gIR0CrND2ZqmCRdX2UKGgGR7+3pHI6r/83aAdLAmgIR0CrNBRe1KGtdX2UKGgGR7/BBKL876pHaAdLAmgIR0CrM6p6QeV+dX2UKGgGR7/AfbsWweNlaAdLAmgIR0CrNEYB/7SBdX2UKGgGR7/LGnXNC7btaAdLA2gIR0CrM+nktEofdX2UKGgGR7+inYQJ5VwQaAdLAWgIR0CrM67/4qPPdX2UKGgGR7/DjYI0IkZ8aAdLAmgIR0CrNB5N47iidX2UKGgGR7/CjfvWpZOjaAdLAmgIR0CrM7h/ZuhsdX2UKGgGR7/Bc4YJmdy1aAdLAmgIR0CrNCj3Ehq1dX2UKGgGR7/XDuBtk4FSaAdLA2gIR0CrM/n8sMAndX2UKGgGR7/bol2NedCmaAdLBGgIR0CrNFqDCgscdX2UKGgGR7+XqZ+hGpdbaAdLAWgIR0CrNF7r1M/RdX2UKGgGR7/Uh24d6sySaAdLA2gIR0CrM8jF6zE8dX2UKGgGR7+WvB7/n4fwaAdLAWgIR0CrNGR0+1SgdX2UKGgGR7/KYWtU4rBkaAdLA2gIR0CrNDd4u9OAdX2UKGgGR7/IHwgDA8B/aAdLA2gIR0CrNAiFj/dZdX2UKGgGR7+mH31zySV4aAdLAWgIR0CrNDvZyuIRdX2UKGgGR7+59Dx9XtBwaAdLAmgIR0CrM9HN5dGBdX2UKGgGR79w8wHqu8sdaAdLAWgIR0CrNEJw84gidX2UKGgGR7+FymygPEsKaAdLAWgIR0CrM9hyKekIdX2UKGgGR7/CPGQ0XP7faAdLA2gIR0CrNHQMH8jzdX2UKGgGR7/ItYjjaPCEaAdLA2gIR0CrNBgDifg8dX2UKGgGR7+6gbp/wy6+aAdLAmgIR0CrNEtcOby6dX2UKGgGR7+5gBtDUmUoaAdLAmgIR0CrM+FI3BHkdX2UKGgGR7+6xVyWAwwkaAdLAmgIR0CrNCCBGx2TdX2UKGgGR7+4RlHz6JqJaAdLAmgIR0CrNFP+n62wdX2UKGgGR7/REv0yxiXqaAdLA2gIR0CrM/BZ6lchdX2UKGgGR7/QsMiKR+z/aAdLA2gIR0CrNGJosZpBdX2UKGgGR7/Vkka/ATIvaAdLBGgIR0CrNDOcDr7gdX2UKGgGR7+ZbD/EOy3TaAdLAWgIR0CrNDflZHNHdX2UKGgGR7/pd7F85S3taAdLCWgIR0CrNJ57gKnfdX2UKGgGR7/RwGnn+yZ8aAdLA2gIR0CrNHFlsguAdX2UKGgGR7++swL3K0UoaAdLAmgIR0CrNEJ84PwvdX2UKGgGR7/XuQp4KQaKaAdLBWgIR0CrNAel9BrvdX2UKGgGR7/U9zOoo/iYaAdLA2gIR0CrNKtg8bJfdX2UKGgGR7/HO5avA44qaAdLA2gIR0CrNE8lHBk7dX2UKGgGR7/J7dBSk0rLaAdLA2gIR0CrNBRPoFFEdX2UKGgGR7/SYixFAmiQaAdLBGgIR0CrNIKb8WKudX2UKGgGR7+6q0dBBzFNaAdLAmgIR0CrNB78m8dxdX2UKGgGR7/Ur4Fiay8jaAdLA2gIR0CrNLqeTV2BdX2UKGgGR7+2NHYpUgjhaAdLAmgIR0CrNI11Oj7AdX2UKGgGR7/RmmtQsPJ8aAdLA2gIR0CrNF5ylvZRdX2UKGgGR7+o/keZG8VYaAdLAWgIR0CrNL8Oby6MdX2UKGgGR7/ILsKLKmsOaAdLA2gIR0CrNJocrAgxdX2UKGgGR7/Ocm0E5hjOaAdLA2gIR0CrNGs5n13/dX2UKGgGR7/VHavicXnAaAdLBGgIR0CrNDCFTNt7dX2UKGgGR7/CJzDGcWj5aAdLAmgIR0CrNKWNedCmdX2UKGgGR7+yr1dxAB1caAdLAmgIR0CrNDvRJEpidX2UKGgGR7/OZhKDkELZaAdLA2gIR0CrNHwvpQk5dX2UKGgGR7/ZRD1Gsmv4aAdLBmgIR0CrNN59mYjTdX2UKGgGR7/LehPCVKPGaAdLA2gIR0CrNLeZgG8mdX2UKGgGR7+6jvd/J/5MaAdLAmgIR0CrNMPAXVLBdX2UKGgGR7/emxdIGyHEaAdLBGgIR0CrNJUuUUwjdX2UKGgGR7/dC+lCTlkpaAdLBGgIR0CrNPYDTz/ZdX2UKGgGR7/ggV45cTrWaAdLBmgIR0CrNF64lQdkdX2UKGgGR7/QM1TBInSfaAdLA2gIR0CrNKH1WbPQdX2UKGgGR7/SyxA0Kqn4aAdLBGgIR0CrNNds7+1jdX2UKGgGR7/J/o7muDBeaAdLA2gIR0CrNG1lXiiqdX2UKGgGR7/bfMwDeTFEaAdLBGgIR0CrNQkI5YHPdX2UKGgGR7+id6LOzIFNaAdLAWgIR0CrNNv1ct5EdX2UKGgGR7/DJsfq5byIaAdLAmgIR0CrNRGQjlgddX2UKGgGR7/OtozvZyuIaAdLBGgIR0CrNLVrylN2dX2UKGgGR7/NWqcVgx8EaAdLA2gIR0CrNHq+SKWLdX2UKGgGR7/Uojv/io87aAdLA2gIR0CrNOk0aZQYdX2UKGgGR7+lImPYFqzraAdLAWgIR0CrNLo2XLNfdX2UKGgGR7/UxtpEhJRPaAdLA2gIR0CrNImD15B1dX2UKGgGR7/YVlPJq7AdaAdLBGgIR0CrNSUulGgBdX2UKGgGR7/GeVcD8tPIaAdLA2gIR0CrNPh9LHuJdX2UKGgGR7/TuyeI2wV1aAdLA2gIR0CrNMmFJxvOdX2UKGgGR7/EcCHRCx/vaAdLAmgIR0CrNJLWiDdydX2UKGgGR7/KKZUkv9LpaAdLA2gIR0CrNTUMoc7ydX2UKGgGR7/LjQzDXOGCaAdLA2gIR0CrNQhS9/SZdX2UKGgGR7/Ti8Fpwjt5aAdLA2gIR0CrNKJRXOnmdX2UKGgGR7+4WsRxtHhCaAdLAmgIR0CrNRC7CiyqdX2UKGgGR7/X+IuXeFcqaAdLBWgIR0CrNOHjQzDXdX2UKGgGR7/Th6By0a60aAdLA2gIR0CrNUKcd5prdX2UKGgGR7+/8Q7LdN34aAdLAmgIR0CrNRkm6XjVdX2UKGgGR7/WfWcz67/XaAdLBGgIR0CrNLXnyNGWdX2UKGgGR7/Ls3yZrpJPaAdLA2gIR0CrNVGO+7DmdX2UKGgGR7/D7aZhKDkEaAdLAmgIR0CrNSR/ustDdX2UKGgGR7/VgVGkN4JNaAdLBGgIR0CrNPXG4qgAdX2UKGgGR7/DCtRvWH1waAdLAmgIR0CrNL+nqFAWdX2UKGgGR7/GNxVAAyVOaAdLA2gIR0CrNTIvalDXdX2UKGgGR7/STEBKcurZaAdLA2gIR0CrNQNt65XmdX2UKGgGR7/WV58jRlYmaAdLBGgIR0CrNWaiKziTdX2UKGgGR7/ZEr5IpYs/aAdLBGgIR0CrNNNBWxQjdX2UKGgGR7/N3Y+Sr5qNaAdLA2gIR0CrNXLnkkrxdX2UKGgGR7/ZzOHFglWwaAdLBGgIR0CrNUXPZ7HAdX2UKGgGR7/Y+jM3ZPEbaAdLBGgIR0CrNRbjDKoydX2UKGgGR7/LsrNGEwnIaAdLA2gIR0CrNOADA8B/dX2UKGgGR7/KLVFx4ptraAdLA2gIR0CrNYHtF8XvdX2UKGgGR7/MJa7mMfihaAdLA2gIR0CrNVTWwu/UdX2UKGgGR7/KG0u14Pf9aAdLA2gIR0CrNSXaBZp0dX2UKGgGR7++VMVUMoc8aAdLAmgIR0CrNOr4N7SidX2UKGgGR7+oP7N0NjLCaAdLAWgIR0CrNYajWTX8dX2UKGgGR7/I+QEIPbwjaAdLA2gIR0CrNTIjGDL9dX2UKGgGR7/L7ZWaMJhOaAdLA2gIR0CrNPdL6DXfdWUu"
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.95,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": true,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"bounded_below": "[ True True True]",
|
86 |
+
"bounded_above": "[ True True True]",
|
87 |
+
"_shape": [
|
88 |
+
3
|
89 |
+
],
|
90 |
+
"low": "[-1. -1. -1.]",
|
91 |
+
"high": "[1. 1. 1.]",
|
92 |
+
"low_repr": "-1.0",
|
93 |
+
"high_repr": "1.0",
|
94 |
+
"_np_random": null
|
95 |
+
},
|
96 |
+
"n_envs": 4,
|
97 |
+
"lr_schedule": {
|
98 |
+
":type:": "<class 'function'>",
|
99 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
100 |
+
}
|
101 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0d9a747ffc4cf3a9d13dd377655e07cde00813e47ff967b18f136227c10ac02
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fabbdbcd2681cd200c2f26a3fbb51e163a45d1c2ee1f8598cdc2b7428462c126
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bcb219fbd90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bcb219f3380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVlAAAAAAAAAB9lCiMCG5ldF9hcmNolF2UKEtAS0BljA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "net_arch": [64, 64], "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694961159022572296, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADAq+v6fBz7+FcUc/niHgv8nVHsBKeiDAXi6rPt4q0Lvwz/E+Xi6rPt4q0Lvwz/E+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8eQDv7Ny0b9sbmg/zP2avwfwjr+Tv7S/w25tP/7N5r5132Q+bZvrvviWgD+LBjY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAMCr6/p8HPv4VxRz96kdW+ADSDv7DU3T+eIeC/ydUewEp6IMCUjau/tHGFvwBMcb9eLqs+3irQu/DP8T5Wn/k+jrW3u6clyD5eLqs+3irQu/DP8T5Wn/k+jrW3u6clyD6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-1.4846816 -1.6230973 0.7790759 ]\n [-1.7510259 -2.4817984 -2.507464 ]\n [ 0.33433813 -0.00635277 0.47228956]\n [ 0.33433813 -0.00635277 0.47228956]]", "desired_goal": "[[-0.5152121 -1.6363128 0.9079349 ]\n [-1.2108703 -1.1167 -1.4120964 ]\n [ 0.92747134 -0.45079035 0.22350867]\n [-0.46017018 1.0046072 0.71103734]]", "observation": "[[-1.4846816 -1.6230973 0.7790759 -0.41712552 -1.0250244 1.7330532 ]\n [-1.7510259 -2.4817984 -2.507464 -1.3402581 -1.0425324 -0.9425659 ]\n [ 0.33433813 -0.00635277 0.47228956 0.48754376 -0.00560636 0.39091226]\n [ 0.33433813 -0.00635277 0.47228956 0.48754376 -0.00560636 0.39091226]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMbKnPRauwL2n8Xg9atFbPK78kjttWnE98ecPvcXp2b236A0+49oOPteDsT0XTOg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08188284 -0.09408204 0.06077733]\n [ 0.01341663 0.00448569 0.05892413]\n [-0.03513331 -0.10640291 0.13858305]\n [ 0.13950686 0.08667725 0.11342638]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8XTAnDziCKMAWyUSwKMAXSUR0CrNAc9wFTvdX2UKGgGR7+1RqGlANXpaAdLAmgIR0CrM9jn/1g6dX2UKGgGR7/N2Bas6q82aAdLA2gIR0CrM57MX7+DdX2UKGgGR7/QXzlLeyiVaAdLA2gIR0CrND2ZqmCRdX2UKGgGR7+3pHI6r/83aAdLAmgIR0CrNBRe1KGtdX2UKGgGR7/BBKL876pHaAdLAmgIR0CrM6p6QeV+dX2UKGgGR7/AfbsWweNlaAdLAmgIR0CrNEYB/7SBdX2UKGgGR7/LGnXNC7btaAdLA2gIR0CrM+nktEofdX2UKGgGR7+inYQJ5VwQaAdLAWgIR0CrM67/4qPPdX2UKGgGR7/DjYI0IkZ8aAdLAmgIR0CrNB5N47iidX2UKGgGR7/CjfvWpZOjaAdLAmgIR0CrM7h/ZuhsdX2UKGgGR7/Bc4YJmdy1aAdLAmgIR0CrNCj3Ehq1dX2UKGgGR7/XDuBtk4FSaAdLA2gIR0CrM/n8sMAndX2UKGgGR7/bol2NedCmaAdLBGgIR0CrNFqDCgscdX2UKGgGR7+XqZ+hGpdbaAdLAWgIR0CrNF7r1M/RdX2UKGgGR7/Uh24d6sySaAdLA2gIR0CrM8jF6zE8dX2UKGgGR7+WvB7/n4fwaAdLAWgIR0CrNGR0+1SgdX2UKGgGR7/KYWtU4rBkaAdLA2gIR0CrNDd4u9OAdX2UKGgGR7/IHwgDA8B/aAdLA2gIR0CrNAiFj/dZdX2UKGgGR7+mH31zySV4aAdLAWgIR0CrNDvZyuIRdX2UKGgGR7+59Dx9XtBwaAdLAmgIR0CrM9HN5dGBdX2UKGgGR79w8wHqu8sdaAdLAWgIR0CrNEJw84gidX2UKGgGR7+FymygPEsKaAdLAWgIR0CrM9hyKekIdX2UKGgGR7/CPGQ0XP7faAdLA2gIR0CrNHQMH8jzdX2UKGgGR7/ItYjjaPCEaAdLA2gIR0CrNBgDifg8dX2UKGgGR7+6gbp/wy6+aAdLAmgIR0CrNEtcOby6dX2UKGgGR7+5gBtDUmUoaAdLAmgIR0CrM+FI3BHkdX2UKGgGR7+6xVyWAwwkaAdLAmgIR0CrNCCBGx2TdX2UKGgGR7+4RlHz6JqJaAdLAmgIR0CrNFP+n62wdX2UKGgGR7/REv0yxiXqaAdLA2gIR0CrM/BZ6lchdX2UKGgGR7/QsMiKR+z/aAdLA2gIR0CrNGJosZpBdX2UKGgGR7/Vkka/ATIvaAdLBGgIR0CrNDOcDr7gdX2UKGgGR7+ZbD/EOy3TaAdLAWgIR0CrNDflZHNHdX2UKGgGR7/pd7F85S3taAdLCWgIR0CrNJ57gKnfdX2UKGgGR7/RwGnn+yZ8aAdLA2gIR0CrNHFlsguAdX2UKGgGR7++swL3K0UoaAdLAmgIR0CrNEJ84PwvdX2UKGgGR7/XuQp4KQaKaAdLBWgIR0CrNAel9BrvdX2UKGgGR7/U9zOoo/iYaAdLA2gIR0CrNKtg8bJfdX2UKGgGR7/HO5avA44qaAdLA2gIR0CrNE8lHBk7dX2UKGgGR7/J7dBSk0rLaAdLA2gIR0CrNBRPoFFEdX2UKGgGR7/SYixFAmiQaAdLBGgIR0CrNIKb8WKudX2UKGgGR7+6q0dBBzFNaAdLAmgIR0CrNB78m8dxdX2UKGgGR7/Ur4Fiay8jaAdLA2gIR0CrNLqeTV2BdX2UKGgGR7+2NHYpUgjhaAdLAmgIR0CrNI11Oj7AdX2UKGgGR7/RmmtQsPJ8aAdLA2gIR0CrNF5ylvZRdX2UKGgGR7+o/keZG8VYaAdLAWgIR0CrNL8Oby6MdX2UKGgGR7/ILsKLKmsOaAdLA2gIR0CrNJocrAgxdX2UKGgGR7/Ocm0E5hjOaAdLA2gIR0CrNGs5n13/dX2UKGgGR7/VHavicXnAaAdLBGgIR0CrNDCFTNt7dX2UKGgGR7/CJzDGcWj5aAdLAmgIR0CrNKWNedCmdX2UKGgGR7+yr1dxAB1caAdLAmgIR0CrNDvRJEpidX2UKGgGR7/OZhKDkELZaAdLA2gIR0CrNHwvpQk5dX2UKGgGR7/ZRD1Gsmv4aAdLBmgIR0CrNN59mYjTdX2UKGgGR7/LehPCVKPGaAdLA2gIR0CrNLeZgG8mdX2UKGgGR7+6jvd/J/5MaAdLAmgIR0CrNMPAXVLBdX2UKGgGR7/emxdIGyHEaAdLBGgIR0CrNJUuUUwjdX2UKGgGR7/dC+lCTlkpaAdLBGgIR0CrNPYDTz/ZdX2UKGgGR7/ggV45cTrWaAdLBmgIR0CrNF64lQdkdX2UKGgGR7/QM1TBInSfaAdLA2gIR0CrNKH1WbPQdX2UKGgGR7/SyxA0Kqn4aAdLBGgIR0CrNNds7+1jdX2UKGgGR7/J/o7muDBeaAdLA2gIR0CrNG1lXiiqdX2UKGgGR7/bfMwDeTFEaAdLBGgIR0CrNQkI5YHPdX2UKGgGR7+id6LOzIFNaAdLAWgIR0CrNNv1ct5EdX2UKGgGR7/DJsfq5byIaAdLAmgIR0CrNRGQjlgddX2UKGgGR7/OtozvZyuIaAdLBGgIR0CrNLVrylN2dX2UKGgGR7/NWqcVgx8EaAdLA2gIR0CrNHq+SKWLdX2UKGgGR7/Uojv/io87aAdLA2gIR0CrNOk0aZQYdX2UKGgGR7+lImPYFqzraAdLAWgIR0CrNLo2XLNfdX2UKGgGR7/UxtpEhJRPaAdLA2gIR0CrNImD15B1dX2UKGgGR7/YVlPJq7AdaAdLBGgIR0CrNSUulGgBdX2UKGgGR7/GeVcD8tPIaAdLA2gIR0CrNPh9LHuJdX2UKGgGR7/TuyeI2wV1aAdLA2gIR0CrNMmFJxvOdX2UKGgGR7/EcCHRCx/vaAdLAmgIR0CrNJLWiDdydX2UKGgGR7/KKZUkv9LpaAdLA2gIR0CrNTUMoc7ydX2UKGgGR7/LjQzDXOGCaAdLA2gIR0CrNQhS9/SZdX2UKGgGR7/Ti8Fpwjt5aAdLA2gIR0CrNKJRXOnmdX2UKGgGR7+4WsRxtHhCaAdLAmgIR0CrNRC7CiyqdX2UKGgGR7/X+IuXeFcqaAdLBWgIR0CrNOHjQzDXdX2UKGgGR7/Th6By0a60aAdLA2gIR0CrNUKcd5prdX2UKGgGR7+/8Q7LdN34aAdLAmgIR0CrNRkm6XjVdX2UKGgGR7/WfWcz67/XaAdLBGgIR0CrNLXnyNGWdX2UKGgGR7/Ls3yZrpJPaAdLA2gIR0CrNVGO+7DmdX2UKGgGR7/D7aZhKDkEaAdLAmgIR0CrNSR/ustDdX2UKGgGR7/VgVGkN4JNaAdLBGgIR0CrNPXG4qgAdX2UKGgGR7/DCtRvWH1waAdLAmgIR0CrNL+nqFAWdX2UKGgGR7/GNxVAAyVOaAdLA2gIR0CrNTIvalDXdX2UKGgGR7/STEBKcurZaAdLA2gIR0CrNQNt65XmdX2UKGgGR7/WV58jRlYmaAdLBGgIR0CrNWaiKziTdX2UKGgGR7/ZEr5IpYs/aAdLBGgIR0CrNNNBWxQjdX2UKGgGR7/N3Y+Sr5qNaAdLA2gIR0CrNXLnkkrxdX2UKGgGR7/ZzOHFglWwaAdLBGgIR0CrNUXPZ7HAdX2UKGgGR7/Y+jM3ZPEbaAdLBGgIR0CrNRbjDKoydX2UKGgGR7/LsrNGEwnIaAdLA2gIR0CrNOADA8B/dX2UKGgGR7/KLVFx4ptraAdLA2gIR0CrNYHtF8XvdX2UKGgGR7/MJa7mMfihaAdLA2gIR0CrNVTWwu/UdX2UKGgGR7/KG0u14Pf9aAdLA2gIR0CrNSXaBZp0dX2UKGgGR7++VMVUMoc8aAdLAmgIR0CrNOr4N7SidX2UKGgGR7+oP7N0NjLCaAdLAWgIR0CrNYajWTX8dX2UKGgGR7/I+QEIPbwjaAdLA2gIR0CrNTIjGDL9dX2UKGgGR7/L7ZWaMJhOaAdLA2gIR0CrNPdL6DXfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (702 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.2051484369672835, "std_reward": 0.1537104414254663, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-17T15:17:05.760877"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce3167bf1f4e5c47886555a0966e0f1c3810f8ba1df2067ad7969eb229b92cf6
|
3 |
+
size 2623
|