File size: 1,581 Bytes
29ae38c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: llama3
base_model: TIGER-Lab/Mantis-8B-clip-llama3-pretraind
tags:
- generated_from_trainer
model-index:
- name: mma_mantis_clip_580k-seq_length_8192-lr_1e-5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://salesforceairesearch.wandb.io/jianguozhang/Mantis/runs/i29y5hr9)
# mma_mantis_clip_580k-seq_length_8192-lr_1e-5

This model is a fine-tuned version of [TIGER-Lab/Mantis-8B-clip-llama3-pretraind](https://huggingface.co/TIGER-Lab/Mantis-8B-clip-llama3-pretraind) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0

### Training results



### Framework versions

- Transformers 4.43.0
- Pytorch 2.4.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1