zhuhz22 commited on
Commit
bdd4cb4
·
verified ·
1 Parent(s): 233cf8c

End of training

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ s/1066.jpg filter=lfs diff=lfs merge=lfs -text
37
+ s/s/steps.jpg filter=lfs diff=lfs merge=lfs -text
A 360 shot of a sleek yacht sailing gracefully through the crystal-clear waters of the Caribbean..png ADDED
sunglasses, camera pan from left to right..png RENAMED
File without changes
A panda wearing sunglasses walking in slow-motion under water, in photorealistic style..png ADDED
A pizza spinning inside a wood fired pizza oven; dramatic vivid colors..png ADDED
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: diffusers
3
+ license: creativeml-openrail-m
4
+ tags:
5
+ - stable-diffusion
6
+ - stable-diffusion-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - diffusers-training
10
+ - image-to-video
11
+ - stable-diffusion
12
+ - stable-diffusion-diffusers
13
+ - image-to-video
14
+ - diffusers
15
+ - diffusers-training
16
+ inference: true
17
+ ---
18
+
19
+ <!-- This model card has been generated automatically according to the information the training script had access to. You
20
+ should probably proofread and complete it, then remove this comment. -->
21
+
22
+
23
+ # Image-to-Video finetuning - zhuhz22/try4
24
+
25
+ ## Pipeline usage
26
+
27
+ You can use the pipeline like so:
28
+
29
+ ```python
30
+ from diffusers import EulerDiscreteScheduler
31
+ import torch
32
+ from diffusers.utils import load_image, export_to_video
33
+ from svd.inference.pipline_CILsvd import StableVideoDiffusionCILPipeline
34
+
35
+ # set the start time M (sigma_max) for inference
36
+ scheduler = EulerDiscreteScheduler.from_pretrained(
37
+ "zhuhz22/try4",
38
+ subfolder="scheduler",
39
+ sigma_max=100
40
+ )
41
+
42
+ pipeline = StableVideoDiffusionCILPipeline.from_pretrained(
43
+ "zhuhz22/try4", scheduler=scheduler, torch_dtype=torch.float16, variant="fp16"
44
+ ) # Note that set the default parameters, fps, motion_bucket_id
45
+
46
+ pipeline.enable_model_cpu_offload()
47
+
48
+ # demo
49
+ image = load_image("demo/a car parked in a parking lot with palm trees nearby,calm seas and skies..png")
50
+ image = image.resize((512,320))
51
+
52
+ generator = torch.manual_seed(42)
53
+
54
+ # analytic_path:
55
+ # if is video path, compute the initial noise automatically.
56
+ # if is tensor path, load
57
+ # if none, standard inference
58
+ analytic_path=None
59
+
60
+ frames = pipeline(
61
+ image,
62
+ height=image.height,
63
+ width=image.width,
64
+ num_frames=16,
65
+ fps=3,
66
+ motion_bucket_id=20,
67
+ decode_chunk_size=8,
68
+ generator=generator,
69
+ analytic_path=analytic_path
70
+ ).frames[0]
71
+
72
+ export_to_video(frames, "generated.mp4", fps=7)
73
+
74
+ ```
75
+
76
+
77
+
78
+
79
+ ## Intended uses & limitations
80
+
81
+ #### How to use
82
+
83
+ ```python
84
+ # TODO: add an example code snippet for running this diffusion pipeline
85
+ ```
86
+
87
+ #### Limitations and bias
88
+
89
+ [TODO: provide examples of latent issues and potential remediations]
90
+
91
+ ## Training details
92
+
93
+ [TODO: describe the data used to train the model]
skies..png RENAMED
File without changes
s/1066.jpg ADDED

Git LFS Details

  • SHA256: ed69a20e2b3e8768919b67d305a7aadf02687566eb7d186c03bd2059384c5f5b
  • Pointer size: 132 Bytes
  • Size of remote file: 2.22 MB
s/s/steps.jpg ADDED

Git LFS Details

  • SHA256: 7bec7a095d2f58efb30ae81fe7d260283b1988c3fb75aec47fb751ca81729e33
  • Pointer size: 132 Bytes
  • Size of remote file: 2.24 MB