End of training
Browse files- .gitattributes +2 -0
- A 360 shot of a sleek yacht sailing gracefully through the crystal-clear waters of the Caribbean..png +0 -0
- sunglasses, camera pan from left to right..png +0 -0
- A panda wearing sunglasses walking in slow-motion under water, in photorealistic style..png +0 -0
- A pizza spinning inside a wood fired pizza oven; dramatic vivid colors..png +0 -0
- README.md +93 -0
- skies..png +0 -0
- s/1066.jpg +3 -0
- s/s/steps.jpg +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
s/1066.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
s/s/steps.jpg filter=lfs diff=lfs merge=lfs -text
|
A 360 shot of a sleek yacht sailing gracefully through the crystal-clear waters of the Caribbean..png
ADDED
![]() |
sunglasses, camera pan from left to right..png
RENAMED
File without changes
|
A panda wearing sunglasses walking in slow-motion under water, in photorealistic style..png
ADDED
![]() |
A pizza spinning inside a wood fired pizza oven; dramatic vivid colors..png
ADDED
![]() |
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: diffusers
|
3 |
+
license: creativeml-openrail-m
|
4 |
+
tags:
|
5 |
+
- stable-diffusion
|
6 |
+
- stable-diffusion-diffusers
|
7 |
+
- text-to-image
|
8 |
+
- diffusers
|
9 |
+
- diffusers-training
|
10 |
+
- image-to-video
|
11 |
+
- stable-diffusion
|
12 |
+
- stable-diffusion-diffusers
|
13 |
+
- image-to-video
|
14 |
+
- diffusers
|
15 |
+
- diffusers-training
|
16 |
+
inference: true
|
17 |
+
---
|
18 |
+
|
19 |
+
<!-- This model card has been generated automatically according to the information the training script had access to. You
|
20 |
+
should probably proofread and complete it, then remove this comment. -->
|
21 |
+
|
22 |
+
|
23 |
+
# Image-to-Video finetuning - zhuhz22/try4
|
24 |
+
|
25 |
+
## Pipeline usage
|
26 |
+
|
27 |
+
You can use the pipeline like so:
|
28 |
+
|
29 |
+
```python
|
30 |
+
from diffusers import EulerDiscreteScheduler
|
31 |
+
import torch
|
32 |
+
from diffusers.utils import load_image, export_to_video
|
33 |
+
from svd.inference.pipline_CILsvd import StableVideoDiffusionCILPipeline
|
34 |
+
|
35 |
+
# set the start time M (sigma_max) for inference
|
36 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(
|
37 |
+
"zhuhz22/try4",
|
38 |
+
subfolder="scheduler",
|
39 |
+
sigma_max=100
|
40 |
+
)
|
41 |
+
|
42 |
+
pipeline = StableVideoDiffusionCILPipeline.from_pretrained(
|
43 |
+
"zhuhz22/try4", scheduler=scheduler, torch_dtype=torch.float16, variant="fp16"
|
44 |
+
) # Note that set the default parameters, fps, motion_bucket_id
|
45 |
+
|
46 |
+
pipeline.enable_model_cpu_offload()
|
47 |
+
|
48 |
+
# demo
|
49 |
+
image = load_image("demo/a car parked in a parking lot with palm trees nearby,calm seas and skies..png")
|
50 |
+
image = image.resize((512,320))
|
51 |
+
|
52 |
+
generator = torch.manual_seed(42)
|
53 |
+
|
54 |
+
# analytic_path:
|
55 |
+
# if is video path, compute the initial noise automatically.
|
56 |
+
# if is tensor path, load
|
57 |
+
# if none, standard inference
|
58 |
+
analytic_path=None
|
59 |
+
|
60 |
+
frames = pipeline(
|
61 |
+
image,
|
62 |
+
height=image.height,
|
63 |
+
width=image.width,
|
64 |
+
num_frames=16,
|
65 |
+
fps=3,
|
66 |
+
motion_bucket_id=20,
|
67 |
+
decode_chunk_size=8,
|
68 |
+
generator=generator,
|
69 |
+
analytic_path=analytic_path
|
70 |
+
).frames[0]
|
71 |
+
|
72 |
+
export_to_video(frames, "generated.mp4", fps=7)
|
73 |
+
|
74 |
+
```
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
## Intended uses & limitations
|
80 |
+
|
81 |
+
#### How to use
|
82 |
+
|
83 |
+
```python
|
84 |
+
# TODO: add an example code snippet for running this diffusion pipeline
|
85 |
+
```
|
86 |
+
|
87 |
+
#### Limitations and bias
|
88 |
+
|
89 |
+
[TODO: provide examples of latent issues and potential remediations]
|
90 |
+
|
91 |
+
## Training details
|
92 |
+
|
93 |
+
[TODO: describe the data used to train the model]
|
skies..png
RENAMED
File without changes
|
s/1066.jpg
ADDED
![]() |
Git LFS Details
|
s/s/steps.jpg
ADDED
![]() |
Git LFS Details
|