zhuhz22 commited on
Commit
5e4601f
·
verified ·
1 Parent(s): be8c073

End of training

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ s/1066.jpg filter=lfs diff=lfs merge=lfs -text
37
+ s/s/steps.jpg filter=lfs diff=lfs merge=lfs -text
A 360 shot of a sleek yacht sailing gracefully through the crystal-clear waters of the Caribbean..png ADDED
sunglasses, camera pan from left to right..png RENAMED
File without changes
A panda wearing sunglasses walking in slow-motion under water, in photorealistic style..png ADDED
A pizza spinning inside a wood fired pizza oven; dramatic vivid colors..png ADDED
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: diffusers
3
+ license: creativeml-openrail-m
4
+ tags:
5
+ - stable-diffusion
6
+ - stable-diffusion-diffusers
7
+ - text-to-image
8
+ - diffusers
9
+ - diffusers-training
10
+ inference: true
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the training script had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+
17
+ # Image-to-Video finetuning - zhuhz22/try4
18
+
19
+ ## Pipeline usage
20
+
21
+ You can use the pipeline like so:
22
+
23
+ ```python
24
+ from diffusers import EulerDiscreteScheduler
25
+ import torch
26
+ from diffusers.utils import load_image, export_to_video
27
+ from svd.inference.pipline_CILsvd import StableVideoDiffusionCILPipeline
28
+
29
+ # set the start time M (sigma_max) for inference
30
+ scheduler = EulerDiscreteScheduler.from_pretrained(
31
+ "zhuhz22/try4",
32
+ subfolder="scheduler",
33
+ sigma_max=100
34
+ )
35
+
36
+ pipeline = StableVideoDiffusionCILPipeline.from_pretrained(
37
+ "zhuhz22/try4", scheduler=scheduler, torch_dtype=torch.float16, variant="fp16"
38
+ ) # Note that set the default parameters, fps, motion_bucket_id
39
+
40
+ pipeline.enable_model_cpu_offload()
41
+
42
+ # demo
43
+ image = load_image("demo/a car parked in a parking lot with palm trees nearby,calm seas and skies..png")
44
+ image = image.resize((512,320))
45
+
46
+ generator = torch.manual_seed(42)
47
+
48
+ # analytic_path:
49
+ # if is video path, compute the initial noise automatically.
50
+ # if is tensor path, load
51
+ # if none, standard inference
52
+ analytic_path=None
53
+
54
+ frames = pipeline(
55
+ image,
56
+ height=image.height,
57
+ width=image.width,
58
+ num_frames=16,
59
+ fps=3,
60
+ motion_bucket_id=20,
61
+ decode_chunk_size=8,
62
+ generator=generator,
63
+ analytic_path=analytic_path
64
+ ).frames[0]
65
+
66
+ export_to_video(frames, "generated.mp4", fps=7)
67
+
68
+ ```
69
+
70
+
71
+
72
+
73
+ ## Intended uses & limitations
74
+
75
+ #### How to use
76
+
77
+ ```python
78
+ # TODO: add an example code snippet for running this diffusion pipeline
79
+ ```
80
+
81
+ #### Limitations and bias
82
+
83
+ [TODO: provide examples of latent issues and potential remediations]
84
+
85
+ ## Training details
86
+
87
+ [TODO: describe the data used to train the model]
skies..png RENAMED
File without changes
s/1066.jpg ADDED

Git LFS Details

  • SHA256: ed69a20e2b3e8768919b67d305a7aadf02687566eb7d186c03bd2059384c5f5b
  • Pointer size: 132 Bytes
  • Size of remote file: 2.22 MB
s/s/steps.jpg ADDED

Git LFS Details

  • SHA256: 7bec7a095d2f58efb30ae81fe7d260283b1988c3fb75aec47fb751ca81729e33
  • Pointer size: 132 Bytes
  • Size of remote file: 2.24 MB