File size: 40,974 Bytes
2c26ac8 1a4f7a3 2c26ac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 |
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""Configs."""
import math
from fvcore.common.config import CfgNode
# -----------------------------------------------------------------------------
# Config definition
# -----------------------------------------------------------------------------
_C = CfgNode()
# -----------------------------------------------------------------------------
# Contrastive Model (for MoCo, SimCLR, SwAV, BYOL)
# -----------------------------------------------------------------------------
_C.CONTRASTIVE = CfgNode()
# temperature used for contrastive losses
_C.CONTRASTIVE.T = 0.07
# output dimension for the loss
_C.CONTRASTIVE.DIM = 128
# number of training samples (for kNN bank)
_C.CONTRASTIVE.LENGTH = 239975
# the length of MoCo's and MemBanks' queues
_C.CONTRASTIVE.QUEUE_LEN = 65536
# momentum for momentum encoder updates
_C.CONTRASTIVE.MOMENTUM = 0.5
# wether to anneal momentum to value above with cosine schedule
_C.CONTRASTIVE.MOMENTUM_ANNEALING = False
# either memorybank, moco, simclr, byol, swav
_C.CONTRASTIVE.TYPE = "mem"
# wether to interpolate memorybank in time
_C.CONTRASTIVE.INTERP_MEMORY = False
# 1d or 2d (+temporal) memory
_C.CONTRASTIVE.MEM_TYPE = "1d"
# number of classes for online kNN evaluation
_C.CONTRASTIVE.NUM_CLASSES_DOWNSTREAM = 400
# use an MLP projection with these num layers
_C.CONTRASTIVE.NUM_MLP_LAYERS = 1
# dimension of projection and predictor MLPs
_C.CONTRASTIVE.MLP_DIM = 2048
# use BN in projection/prediction MLP
_C.CONTRASTIVE.BN_MLP = False
# use synchronized BN in projection/prediction MLP
_C.CONTRASTIVE.BN_SYNC_MLP = False
# shuffle BN only locally vs. across machines
_C.CONTRASTIVE.LOCAL_SHUFFLE_BN = True
# Wether to fill multiple clips (or just the first) into queue
_C.CONTRASTIVE.MOCO_MULTI_VIEW_QUEUE = False
# if sampling multiple clips per vid they need to be at least min frames apart
_C.CONTRASTIVE.DELTA_CLIPS_MIN = -math.inf
# if sampling multiple clips per vid they can be max frames apart
_C.CONTRASTIVE.DELTA_CLIPS_MAX = math.inf
# if non empty, use predictors with depth specified
_C.CONTRASTIVE.PREDICTOR_DEPTHS = []
# Wether to sequentially process multiple clips (=lower mem usage) or batch them
_C.CONTRASTIVE.SEQUENTIAL = False
# Wether to perform SimCLR loss across machines (or only locally)
_C.CONTRASTIVE.SIMCLR_DIST_ON = True
# Length of queue used in SwAV
_C.CONTRASTIVE.SWAV_QEUE_LEN = 0
# Wether to run online kNN evaluation during training
_C.CONTRASTIVE.KNN_ON = True
# ---------------------------------------------------------------------------- #
# Batch norm options
# ---------------------------------------------------------------------------- #
_C.BN = CfgNode()
# Precise BN stats.
_C.BN.USE_PRECISE_STATS = False
# Number of samples use to compute precise bn.
_C.BN.NUM_BATCHES_PRECISE = 200
# Weight decay value that applies on BN.
_C.BN.WEIGHT_DECAY = 0.0
# Norm type, options include `batchnorm`, `sub_batchnorm`, `sync_batchnorm`
_C.BN.NORM_TYPE = "batchnorm"
# Parameter for SubBatchNorm, where it splits the batch dimension into
# NUM_SPLITS splits, and run BN on each of them separately independently.
_C.BN.NUM_SPLITS = 1
# Parameter for NaiveSyncBatchNorm, where the stats across `NUM_SYNC_DEVICES`
# devices will be synchronized. `NUM_SYNC_DEVICES` cannot be larger than number of
# devices per machine; if global sync is desired, set `GLOBAL_SYNC`.
# By default ONLY applies to NaiveSyncBatchNorm3d; consider also setting
# CONTRASTIVE.BN_SYNC_MLP if appropriate.
_C.BN.NUM_SYNC_DEVICES = 1
# Parameter for NaiveSyncBatchNorm. Setting `GLOBAL_SYNC` to True synchronizes
# stats across all devices, across all machines; in this case, `NUM_SYNC_DEVICES`
# must be set to None.
# By default ONLY applies to NaiveSyncBatchNorm3d; consider also setting
# CONTRASTIVE.BN_SYNC_MLP if appropriate.
_C.BN.GLOBAL_SYNC = False
# ---------------------------------------------------------------------------- #
# Training options.
# ---------------------------------------------------------------------------- #
_C.TRAIN = CfgNode()
# If True Train the model, else skip training.
_C.TRAIN.ENABLE = True
# Kill training if loss explodes over this ratio from the previous 5 measurements.
# Only enforced if > 0.0
_C.TRAIN.KILL_LOSS_EXPLOSION_FACTOR = 0.0
# Dataset.
_C.TRAIN.DATASET = "kinetics"
# Total mini-batch size.
_C.TRAIN.BATCH_SIZE = 64
# Evaluate model on test data every eval period epochs.
_C.TRAIN.EVAL_PERIOD = 10
# Save model checkpoint every checkpoint period epochs.
_C.TRAIN.CHECKPOINT_PERIOD = 10
# Resume training from the latest checkpoint in the output directory.
_C.TRAIN.AUTO_RESUME = True
# Path to the checkpoint to load the initial weight.
_C.TRAIN.CHECKPOINT_FILE_PATH = ""
# Checkpoint types include `caffe2` or `pytorch`.
_C.TRAIN.CHECKPOINT_TYPE = "pytorch"
# If True, perform inflation when loading checkpoint.
_C.TRAIN.CHECKPOINT_INFLATE = False
# If True, reset epochs when loading checkpoint.
_C.TRAIN.CHECKPOINT_EPOCH_RESET = False
# If set, clear all layer names according to the pattern provided.
_C.TRAIN.CHECKPOINT_CLEAR_NAME_PATTERN = () # ("backbone.",)
# If True, use FP16 for activations
_C.TRAIN.MIXED_PRECISION = False
# if True, inflate some params from imagenet model.
_C.TRAIN.CHECKPOINT_IN_INIT = False
# ---------------------------------------------------------------------------- #
# Augmentation options.
# ---------------------------------------------------------------------------- #
_C.AUG = CfgNode()
# Whether to enable randaug.
_C.AUG.ENABLE = False
# Number of repeated augmentations to used during training.
# If this is greater than 1, then the actual batch size is
# TRAIN.BATCH_SIZE * AUG.NUM_SAMPLE.
_C.AUG.NUM_SAMPLE = 1
# Not used if using randaug.
_C.AUG.COLOR_JITTER = 0.4
# RandAug parameters.
_C.AUG.AA_TYPE = "rand-m9-mstd0.5-inc1"
# Interpolation method.
_C.AUG.INTERPOLATION = "bicubic"
# Probability of random erasing.
_C.AUG.RE_PROB = 0.25
# Random erasing mode.
_C.AUG.RE_MODE = "pixel"
# Random erase count.
_C.AUG.RE_COUNT = 1
# Do not random erase first (clean) augmentation split.
_C.AUG.RE_SPLIT = False
# Whether to generate input mask during image processing.
_C.AUG.GEN_MASK_LOADER = False
# If True, masking mode is "tube". Default is "cube".
_C.AUG.MASK_TUBE = False
# If True, masking mode is "frame". Default is "cube".
_C.AUG.MASK_FRAMES = False
# The size of generated masks.
_C.AUG.MASK_WINDOW_SIZE = [8, 7, 7]
# The ratio of masked tokens out of all tokens. Also applies to MViT supervised training
_C.AUG.MASK_RATIO = 0.0
# The maximum number of a masked block. None means no maximum limit. (Used only in image MaskFeat.)
_C.AUG.MAX_MASK_PATCHES_PER_BLOCK = None
# ---------------------------------------------------------------------------- #
# Masked pretraining visualization options.
# ---------------------------------------------------------------------------- #
_C.VIS_MASK = CfgNode()
# Whether to do visualization.
_C.VIS_MASK.ENABLE = False
# ---------------------------------------------------------------------------- #
# MipUp options.
# ---------------------------------------------------------------------------- #
_C.MIXUP = CfgNode()
# Whether to use mixup.
_C.MIXUP.ENABLE = False
# Mixup alpha.
_C.MIXUP.ALPHA = 0.8
# Cutmix alpha.
_C.MIXUP.CUTMIX_ALPHA = 1.0
# Probability of performing mixup or cutmix when either/both is enabled.
_C.MIXUP.PROB = 1.0
# Probability of switching to cutmix when both mixup and cutmix enabled.
_C.MIXUP.SWITCH_PROB = 0.5
# Label smoothing.
_C.MIXUP.LABEL_SMOOTH_VALUE = 0.1
# ---------------------------------------------------------------------------- #
# Testing options
# ---------------------------------------------------------------------------- #
_C.TEST = CfgNode()
# If True test the model, else skip the testing.
_C.TEST.ENABLE = True
# Dataset for testing.
_C.TEST.DATASET = "kinetics"
# Total mini-batch size
_C.TEST.BATCH_SIZE = 8
# Path to the checkpoint to load the initial weight.
_C.TEST.CHECKPOINT_FILE_PATH = ""
# Number of clips to sample from a video uniformly for aggregating the
# prediction results.
_C.TEST.NUM_ENSEMBLE_VIEWS = 10
# Number of crops to sample from a frame spatially for aggregating the
# prediction results.
_C.TEST.NUM_SPATIAL_CROPS = 3
# Checkpoint types include `caffe2` or `pytorch`.
_C.TEST.CHECKPOINT_TYPE = "pytorch"
# Path to saving prediction results file.
_C.TEST.SAVE_RESULTS_PATH = ""
_C.TEST.NUM_TEMPORAL_CLIPS = []
# -----------------------------------------------------------------------------
# ResNet options
# -----------------------------------------------------------------------------
_C.RESNET = CfgNode()
# Transformation function.
_C.RESNET.TRANS_FUNC = "bottleneck_transform"
# Number of groups. 1 for ResNet, and larger than 1 for ResNeXt).
_C.RESNET.NUM_GROUPS = 1
# Width of each group (64 -> ResNet; 4 -> ResNeXt).
_C.RESNET.WIDTH_PER_GROUP = 64
# Apply relu in a inplace manner.
_C.RESNET.INPLACE_RELU = True
# Apply stride to 1x1 conv.
_C.RESNET.STRIDE_1X1 = False
# If true, initialize the gamma of the final BN of each block to zero.
_C.RESNET.ZERO_INIT_FINAL_BN = False
# If true, initialize the final conv layer of each block to zero.
_C.RESNET.ZERO_INIT_FINAL_CONV = False
# Number of weight layers.
_C.RESNET.DEPTH = 50
# If the current block has more than NUM_BLOCK_TEMP_KERNEL blocks, use temporal
# kernel of 1 for the rest of the blocks.
_C.RESNET.NUM_BLOCK_TEMP_KERNEL = [[3], [4], [6], [3]]
# Size of stride on different res stages.
_C.RESNET.SPATIAL_STRIDES = [[1], [2], [2], [2]]
# Size of dilation on different res stages.
_C.RESNET.SPATIAL_DILATIONS = [[1], [1], [1], [1]]
# ---------------------------------------------------------------------------- #
# X3D options
# See https://arxiv.org/abs/2004.04730 for details about X3D Networks.
# ---------------------------------------------------------------------------- #
_C.X3D = CfgNode()
# Width expansion factor.
_C.X3D.WIDTH_FACTOR = 1.0
# Depth expansion factor.
_C.X3D.DEPTH_FACTOR = 1.0
# Bottleneck expansion factor for the 3x3x3 conv.
_C.X3D.BOTTLENECK_FACTOR = 1.0 #
# Dimensions of the last linear layer before classificaiton.
_C.X3D.DIM_C5 = 2048
# Dimensions of the first 3x3 conv layer.
_C.X3D.DIM_C1 = 12
# Whether to scale the width of Res2, default is false.
_C.X3D.SCALE_RES2 = False
# Whether to use a BatchNorm (BN) layer before the classifier, default is false.
_C.X3D.BN_LIN5 = False
# Whether to use channelwise (=depthwise) convolution in the center (3x3x3)
# convolution operation of the residual blocks.
_C.X3D.CHANNELWISE_3x3x3 = True
# -----------------------------------------------------------------------------
# Nonlocal options
# -----------------------------------------------------------------------------
_C.NONLOCAL = CfgNode()
# Index of each stage and block to add nonlocal layers.
_C.NONLOCAL.LOCATION = [[[]], [[]], [[]], [[]]]
# Number of group for nonlocal for each stage.
_C.NONLOCAL.GROUP = [[1], [1], [1], [1]]
# Instatiation to use for non-local layer.
_C.NONLOCAL.INSTANTIATION = "dot_product"
# Size of pooling layers used in Non-Local.
_C.NONLOCAL.POOL = [
# Res2
[[1, 2, 2], [1, 2, 2]],
# Res3
[[1, 2, 2], [1, 2, 2]],
# Res4
[[1, 2, 2], [1, 2, 2]],
# Res5
[[1, 2, 2], [1, 2, 2]],
]
# -----------------------------------------------------------------------------
# Model options
# -----------------------------------------------------------------------------
_C.MODEL = CfgNode()
# Model architecture.
_C.MODEL.ARCH = "slowfast"
# Model name
_C.MODEL.MODEL_NAME = "SlowFast"
# The number of classes to predict for the model.
_C.MODEL.NUM_CLASSES = 400
# Loss function.
_C.MODEL.LOSS_FUNC = "cross_entropy"
# Model architectures that has one single pathway.
_C.MODEL.SINGLE_PATHWAY_ARCH = [
"2d",
"c2d",
"i3d",
"slow",
"x3d",
"mvit",
"maskmvit",
]
# Model architectures that has multiple pathways.
_C.MODEL.MULTI_PATHWAY_ARCH = ["slowfast"]
# Dropout rate before final projection in the backbone.
_C.MODEL.DROPOUT_RATE = 0.5
# Randomly drop rate for Res-blocks, linearly increase from res2 to res5
_C.MODEL.DROPCONNECT_RATE = 0.0
# The std to initialize the fc layer(s).
_C.MODEL.FC_INIT_STD = 0.01
# Activation layer for the output head.
_C.MODEL.HEAD_ACT = "softmax"
# Activation checkpointing enabled or not to save GPU memory.
_C.MODEL.ACT_CHECKPOINT = False
# If True, detach the final fc layer from the network, by doing so, only the
# final fc layer will be trained.
_C.MODEL.DETACH_FINAL_FC = False
# If True, frozen batch norm stats during training.
_C.MODEL.FROZEN_BN = False
# If True, AllReduce gradients are compressed to fp16
_C.MODEL.FP16_ALLREDUCE = False
# -----------------------------------------------------------------------------
# MViT options
# -----------------------------------------------------------------------------
_C.MVIT = CfgNode()
# Options include `conv`, `max`.
_C.MVIT.MODE = "conv"
# If True, perform pool before projection in attention.
_C.MVIT.POOL_FIRST = False
# If True, use cls embed in the network, otherwise don't use cls_embed in transformer.
_C.MVIT.CLS_EMBED_ON = True
# Kernel size for patchtification.
_C.MVIT.PATCH_KERNEL = [3, 7, 7]
# Stride size for patchtification.
_C.MVIT.PATCH_STRIDE = [2, 4, 4]
# Padding size for patchtification.
_C.MVIT.PATCH_PADDING = [2, 4, 4]
# If True, use 2d patch, otherwise use 3d patch.
_C.MVIT.PATCH_2D = False
# Base embedding dimension for the transformer.
_C.MVIT.EMBED_DIM = 96
# Base num of heads for the transformer.
_C.MVIT.NUM_HEADS = 1
# Dimension reduction ratio for the MLP layers.
_C.MVIT.MLP_RATIO = 4.0
# If use, use bias term in attention fc layers.
_C.MVIT.QKV_BIAS = True
# Drop path rate for the tranfomer.
_C.MVIT.DROPPATH_RATE = 0.1
# The initial value of layer scale gamma. Set 0.0 to disable layer scale.
_C.MVIT.LAYER_SCALE_INIT_VALUE = 0.0
# Depth of the transformer.
_C.MVIT.DEPTH = 16
# Normalization layer for the transformer. Only layernorm is supported now.
_C.MVIT.NORM = "layernorm"
# Dimension multiplication at layer i. If 2.0 is used, then the next block will increase
# the dimension by 2 times. Format: [depth_i: mul_dim_ratio]
_C.MVIT.DIM_MUL = []
# Head number multiplication at layer i. If 2.0 is used, then the next block will
# increase the number of heads by 2 times. Format: [depth_i: head_mul_ratio]
_C.MVIT.HEAD_MUL = []
# Stride size for the Pool KV at layer i.
# Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,]
_C.MVIT.POOL_KV_STRIDE = []
# Initial stride size for KV at layer 1. The stride size will be further reduced with
# the raio of MVIT.DIM_MUL. If will overwrite MVIT.POOL_KV_STRIDE if not None.
_C.MVIT.POOL_KV_STRIDE_ADAPTIVE = None
# Stride size for the Pool Q at layer i.
# Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,]
_C.MVIT.POOL_Q_STRIDE = []
# If not None, overwrite the KV_KERNEL and Q_KERNEL size with POOL_KVQ_CONV_SIZ.
# Otherwise the kernel_size is [s + 1 if s > 1 else s for s in stride_size].
_C.MVIT.POOL_KVQ_KERNEL = None
# If True, perform no decay on positional embedding and cls embedding.
_C.MVIT.ZERO_DECAY_POS_CLS = True
# If True, use norm after stem.
_C.MVIT.NORM_STEM = False
# If True, perform separate positional embedding.
_C.MVIT.SEP_POS_EMBED = False
# Dropout rate for the MViT backbone.
_C.MVIT.DROPOUT_RATE = 0.0
# If True, use absolute positional embedding.
_C.MVIT.USE_ABS_POS = True
# If True, use relative positional embedding for spatial dimentions
_C.MVIT.REL_POS_SPATIAL = False
# If True, use relative positional embedding for temporal dimentions
_C.MVIT.REL_POS_TEMPORAL = False
# If True, init rel with zero
_C.MVIT.REL_POS_ZERO_INIT = False
# If True, using Residual Pooling connection
_C.MVIT.RESIDUAL_POOLING = False
# Dim mul in qkv linear layers of attention block instead of MLP
_C.MVIT.DIM_MUL_IN_ATT = False
# If True, using separate linear layers for Q, K, V in attention blocks.
_C.MVIT.SEPARATE_QKV = False
# The initialization scale factor for the head parameters.
_C.MVIT.HEAD_INIT_SCALE = 1.0
# Whether to use the mean pooling of all patch tokens as the output.
_C.MVIT.USE_MEAN_POOLING = False
# If True, use frozen sin cos positional embedding.
_C.MVIT.USE_FIXED_SINCOS_POS = False
# -----------------------------------------------------------------------------
# Masked pretraining options
# -----------------------------------------------------------------------------
_C.MASK = CfgNode()
# Whether to enable Masked style pretraining.
_C.MASK.ENABLE = False
# Whether to enable MAE (discard encoder tokens).
_C.MASK.MAE_ON = False
# Whether to enable random masking in mae
_C.MASK.MAE_RND_MASK = False
# Whether to do random masking per-frame in mae
_C.MASK.PER_FRAME_MASKING = False
# only predict loss on temporal strided patches, or predict full time extent
_C.MASK.TIME_STRIDE_LOSS = True
# Whether to normalize the pred pixel loss
_C.MASK.NORM_PRED_PIXEL = True
# Whether to fix initialization with inverse depth of layer for pretraining.
_C.MASK.SCALE_INIT_BY_DEPTH = False
# Base embedding dimension for the decoder transformer.
_C.MASK.DECODER_EMBED_DIM = 512
# Base embedding dimension for the decoder transformer.
_C.MASK.DECODER_SEP_POS_EMBED = False
# Use a KV kernel in decoder?
_C.MASK.DEC_KV_KERNEL = []
# Use a KV stride in decoder?
_C.MASK.DEC_KV_STRIDE = []
# The depths of features which are inputs of the prediction head.
_C.MASK.PRETRAIN_DEPTH = [15]
# The type of Masked pretraining prediction head.
# Can be "separate", "separate_xformer".
_C.MASK.HEAD_TYPE = "separate"
# The depth of MAE's decoder
_C.MASK.DECODER_DEPTH = 0
# The weight of HOG target loss.
_C.MASK.PRED_HOG = False
# Reversible Configs
_C.MVIT.REV = CfgNode()
# Enable Reversible Model
_C.MVIT.REV.ENABLE = False
# Method to fuse the reversible paths
# see :class: `TwoStreamFusion` for all the options
_C.MVIT.REV.RESPATH_FUSE = "concat"
# Layers to buffer activations at
# (at least Q-pooling layers needed)
_C.MVIT.REV.BUFFER_LAYERS = []
# 'conv' or 'max' operator for the respath in Qpooling
_C.MVIT.REV.RES_PATH = "conv"
# Method to merge hidden states before Qpoolinglayers
_C.MVIT.REV.PRE_Q_FUSION = "avg"
# -----------------------------------------------------------------------------
# SlowFast options
# -----------------------------------------------------------------------------
_C.SLOWFAST = CfgNode()
# Corresponds to the inverse of the channel reduction ratio, $\beta$ between
# the Slow and Fast pathways.
_C.SLOWFAST.BETA_INV = 8
# Corresponds to the frame rate reduction ratio, $\alpha$ between the Slow and
# Fast pathways.
_C.SLOWFAST.ALPHA = 8
# Ratio of channel dimensions between the Slow and Fast pathways.
_C.SLOWFAST.FUSION_CONV_CHANNEL_RATIO = 2
# Kernel dimension used for fusing information from Fast pathway to Slow
# pathway.
_C.SLOWFAST.FUSION_KERNEL_SZ = 5
# -----------------------------------------------------------------------------
# Data options
# -----------------------------------------------------------------------------
_C.DATA = CfgNode()
# The path to the data directory.
_C.DATA.PATH_TO_DATA_DIR = ""
# The separator used between path and label.
_C.DATA.PATH_LABEL_SEPARATOR = " "
# Video path prefix if any.
_C.DATA.PATH_PREFIX = ""
# The number of frames of the input clip.
_C.DATA.NUM_FRAMES = 8
# The video sampling rate of the input clip.
_C.DATA.SAMPLING_RATE = 8
# Eigenvalues for PCA jittering. Note PCA is RGB based.
_C.DATA.TRAIN_PCA_EIGVAL = [0.225, 0.224, 0.229]
# Eigenvectors for PCA jittering.
_C.DATA.TRAIN_PCA_EIGVEC = [
[-0.5675, 0.7192, 0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, 0.4203],
]
# If a imdb have been dumpped to a local file with the following format:
# `{"im_path": im_path, "class": cont_id}`
# then we can skip the construction of imdb and load it from the local file.
_C.DATA.PATH_TO_PRELOAD_IMDB = ""
# The mean value of the video raw pixels across the R G B channels.
_C.DATA.MEAN = [0.45, 0.45, 0.45]
# List of input frame channel dimensions.
_C.DATA.INPUT_CHANNEL_NUM = [3, 3]
# The std value of the video raw pixels across the R G B channels.
_C.DATA.STD = [0.225, 0.225, 0.225]
# The spatial augmentation jitter scales for training.
_C.DATA.TRAIN_JITTER_SCALES = [256, 320]
# The relative scale range of Inception-style area based random resizing augmentation.
# If this is provided, DATA.TRAIN_JITTER_SCALES above is ignored.
_C.DATA.TRAIN_JITTER_SCALES_RELATIVE = []
# The relative aspect ratio range of Inception-style area based random resizing
# augmentation.
_C.DATA.TRAIN_JITTER_ASPECT_RELATIVE = []
# If True, perform stride length uniform temporal sampling.
_C.DATA.USE_OFFSET_SAMPLING = False
# Whether to apply motion shift for augmentation.
_C.DATA.TRAIN_JITTER_MOTION_SHIFT = False
# The spatial crop size for training.
_C.DATA.TRAIN_CROP_SIZE = 224
# The spatial crop size for testing.
_C.DATA.TEST_CROP_SIZE = 256
# Input videos may has different fps, convert it to the target video fps before
# frame sampling.
_C.DATA.TARGET_FPS = 30
# JITTER TARGET_FPS by +- this number randomly
_C.DATA.TRAIN_JITTER_FPS = 0.0
# Decoding backend, options include `pyav` or `torchvision`
_C.DATA.DECODING_BACKEND = "torchvision"
# Decoding resize to short size (set to native size for best speed)
_C.DATA.DECODING_SHORT_SIZE = 256
# if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a
# reciprocal to get the scale. If False, take a uniform sample from
# [min_scale, max_scale].
_C.DATA.INV_UNIFORM_SAMPLE = False
# If True, perform random horizontal flip on the video frames during training.
_C.DATA.RANDOM_FLIP = True
# If True, calculdate the map as metric.
_C.DATA.MULTI_LABEL = False
# Method to perform the ensemble, options include "sum" and "max".
_C.DATA.ENSEMBLE_METHOD = "sum"
# If True, revert the default input channel (RBG <-> BGR).
_C.DATA.REVERSE_INPUT_CHANNEL = False
# how many samples (=clips) to decode from a single video
_C.DATA.TRAIN_CROP_NUM_TEMPORAL = 1
# how many spatial samples to crop from a single clip
_C.DATA.TRAIN_CROP_NUM_SPATIAL = 1
# color random percentage for grayscale conversion
_C.DATA.COLOR_RND_GRAYSCALE = 0.0
# loader can read .csv file in chunks of this chunk size
_C.DATA.LOADER_CHUNK_SIZE = 0
# if LOADER_CHUNK_SIZE > 0, define overall length of .csv file
_C.DATA.LOADER_CHUNK_OVERALL_SIZE = 0
# for chunked reading, dataloader can skip rows in (large)
# training csv file
_C.DATA.SKIP_ROWS = 0
# The separator used between path and label.
_C.DATA.PATH_LABEL_SEPARATOR = " "
# augmentation probability to convert raw decoded video to
# grayscale temporal difference
_C.DATA.TIME_DIFF_PROB = 0.0
# Apply SSL-based SimCLR / MoCo v1/v2 color augmentations,
# with params below
_C.DATA.SSL_COLOR_JITTER = False
# color jitter percentage for brightness, contrast, saturation
_C.DATA.SSL_COLOR_BRI_CON_SAT = [0.4, 0.4, 0.4]
# color jitter percentage for hue
_C.DATA.SSL_COLOR_HUE = 0.1
# SimCLR / MoCo v2 augmentations on/off
_C.DATA.SSL_MOCOV2_AUG = False
# SimCLR / MoCo v2 blur augmentation minimum gaussian sigma
_C.DATA.SSL_BLUR_SIGMA_MIN = [0.0, 0.1]
# SimCLR / MoCo v2 blur augmentation maximum gaussian sigma
_C.DATA.SSL_BLUR_SIGMA_MAX = [0.0, 2.0]
# If combine train/val split as training for in21k
_C.DATA.IN22K_TRAINVAL = False
# If not None, use IN1k as val split when training in21k
_C.DATA.IN22k_VAL_IN1K = ""
# Large resolution models may use different crop ratios
_C.DATA.IN_VAL_CROP_RATIO = 0.875 # 224/256 = 0.875
# don't use real video for kinetics.py
_C.DATA.DUMMY_LOAD = False
# ---------------------------------------------------------------------------- #
# Optimizer options
# ---------------------------------------------------------------------------- #
_C.SOLVER = CfgNode()
# Base learning rate.
_C.SOLVER.BASE_LR = 0.1
# Learning rate policy (see utils/lr_policy.py for options and examples).
_C.SOLVER.LR_POLICY = "cosine"
# Final learning rates for 'cosine' policy.
_C.SOLVER.COSINE_END_LR = 0.0
# Exponential decay factor.
_C.SOLVER.GAMMA = 0.1
# Step size for 'exp' and 'cos' policies (in epochs).
_C.SOLVER.STEP_SIZE = 1
# Steps for 'steps_' policies (in epochs).
_C.SOLVER.STEPS = []
# Learning rates for 'steps_' policies.
_C.SOLVER.LRS = []
# Maximal number of epochs.
_C.SOLVER.MAX_EPOCH = 300
# Momentum.
_C.SOLVER.MOMENTUM = 0.9
# Momentum dampening.
_C.SOLVER.DAMPENING = 0.0
# Nesterov momentum.
_C.SOLVER.NESTEROV = True
# L2 regularization.
_C.SOLVER.WEIGHT_DECAY = 1e-4
# Start the warm up from SOLVER.BASE_LR * SOLVER.WARMUP_FACTOR.
_C.SOLVER.WARMUP_FACTOR = 0.1
# Gradually warm up the SOLVER.BASE_LR over this number of epochs.
_C.SOLVER.WARMUP_EPOCHS = 0.0
# The start learning rate of the warm up.
_C.SOLVER.WARMUP_START_LR = 0.01
# Optimization method.
_C.SOLVER.OPTIMIZING_METHOD = "sgd"
# Base learning rate is linearly scaled with NUM_SHARDS.
_C.SOLVER.BASE_LR_SCALE_NUM_SHARDS = False
# If True, start from the peak cosine learning rate after warm up.
_C.SOLVER.COSINE_AFTER_WARMUP = False
# If True, perform no weight decay on parameter with one dimension (bias term, etc).
_C.SOLVER.ZERO_WD_1D_PARAM = False
# Clip gradient at this value before optimizer update
_C.SOLVER.CLIP_GRAD_VAL = None
# Clip gradient at this norm before optimizer update
_C.SOLVER.CLIP_GRAD_L2NORM = None
# LARS optimizer
_C.SOLVER.LARS_ON = False
# The layer-wise decay of learning rate. Set to 1. to disable.
_C.SOLVER.LAYER_DECAY = 1.0
# Adam's beta
_C.SOLVER.BETAS = (0.9, 0.999)
# ---------------------------------------------------------------------------- #
# Misc options
# ---------------------------------------------------------------------------- #
# The name of the current task; e.g. "ssl"/"sl" for (self)supervised learning
_C.TASK = ""
# Number of GPUs to use (applies to both training and testing).
_C.NUM_GPUS = 1
# Number of machine to use for the job.
_C.NUM_SHARDS = 1
# The index of the current machine.
_C.SHARD_ID = 0
# Output basedir.
_C.OUTPUT_DIR = "."
# Note that non-determinism may still be present due to non-deterministic
# operator implementations in GPU operator libraries.
_C.RNG_SEED = 1
# Log period in iters.
_C.LOG_PERIOD = 10
# If True, log the model info.
_C.LOG_MODEL_INFO = True
# Distributed backend.
_C.DIST_BACKEND = "nccl"
# ---------------------------------------------------------------------------- #
# Benchmark options
# ---------------------------------------------------------------------------- #
_C.BENCHMARK = CfgNode()
# Number of epochs for data loading benchmark.
_C.BENCHMARK.NUM_EPOCHS = 5
# Log period in iters for data loading benchmark.
_C.BENCHMARK.LOG_PERIOD = 100
# If True, shuffle dataloader for epoch during benchmark.
_C.BENCHMARK.SHUFFLE = True
# ---------------------------------------------------------------------------- #
# Common train/test data loader options
# ---------------------------------------------------------------------------- #
_C.DATA_LOADER = CfgNode()
# Number of data loader workers per training process.
_C.DATA_LOADER.NUM_WORKERS = 8
# Load data to pinned host memory.
_C.DATA_LOADER.PIN_MEMORY = True
# Enable multi thread decoding.
_C.DATA_LOADER.ENABLE_MULTI_THREAD_DECODE = False
# ---------------------------------------------------------------------------- #
# Detection options.
# ---------------------------------------------------------------------------- #
_C.DETECTION = CfgNode()
# Whether enable video detection.
_C.DETECTION.ENABLE = False
# Aligned version of RoI. More details can be found at slowfast/models/head_helper.py
_C.DETECTION.ALIGNED = True
# Spatial scale factor.
_C.DETECTION.SPATIAL_SCALE_FACTOR = 16
# RoI tranformation resolution.
_C.DETECTION.ROI_XFORM_RESOLUTION = 7
# -----------------------------------------------------------------------------
# AVA Dataset options
# -----------------------------------------------------------------------------
_C.AVA = CfgNode()
# Directory path of frames.
_C.AVA.FRAME_DIR = "/mnt/fair-flash3-east/ava_trainval_frames.img/"
# Directory path for files of frame lists.
_C.AVA.FRAME_LIST_DIR = (
"/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/"
)
# Directory path for annotation files.
_C.AVA.ANNOTATION_DIR = (
"/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/"
)
# Filenames of training samples list files.
_C.AVA.TRAIN_LISTS = ["train.csv"]
# Filenames of test samples list files.
_C.AVA.TEST_LISTS = ["val.csv"]
# Filenames of box list files for training. Note that we assume files which
# contains predicted boxes will have a suffix "predicted_boxes" in the
# filename.
_C.AVA.TRAIN_GT_BOX_LISTS = ["ava_train_v2.2.csv"]
_C.AVA.TRAIN_PREDICT_BOX_LISTS = []
# Filenames of box list files for test.
_C.AVA.TEST_PREDICT_BOX_LISTS = ["ava_val_predicted_boxes.csv"]
# This option controls the score threshold for the predicted boxes to use.
_C.AVA.DETECTION_SCORE_THRESH = 0.9
# If use BGR as the format of input frames.
_C.AVA.BGR = False
# Training augmentation parameters
# Whether to use color augmentation method.
_C.AVA.TRAIN_USE_COLOR_AUGMENTATION = False
# Whether to only use PCA jitter augmentation when using color augmentation
# method (otherwise combine with color jitter method).
_C.AVA.TRAIN_PCA_JITTER_ONLY = True
# Whether to do horizontal flipping during test.
_C.AVA.TEST_FORCE_FLIP = False
# Whether to use full test set for validation split.
_C.AVA.FULL_TEST_ON_VAL = False
# The name of the file to the ava label map.
_C.AVA.LABEL_MAP_FILE = "ava_action_list_v2.2_for_activitynet_2019.pbtxt"
# The name of the file to the ava exclusion.
_C.AVA.EXCLUSION_FILE = "ava_val_excluded_timestamps_v2.2.csv"
# The name of the file to the ava groundtruth.
_C.AVA.GROUNDTRUTH_FILE = "ava_val_v2.2.csv"
# Backend to process image, includes `pytorch` and `cv2`.
_C.AVA.IMG_PROC_BACKEND = "cv2"
# ---------------------------------------------------------------------------- #
# Multigrid training options
# See https://arxiv.org/abs/1912.00998 for details about multigrid training.
# ---------------------------------------------------------------------------- #
_C.MULTIGRID = CfgNode()
# Multigrid training allows us to train for more epochs with fewer iterations.
# This hyperparameter specifies how many times more epochs to train.
# The default setting in paper trains for 1.5x more epochs than baseline.
_C.MULTIGRID.EPOCH_FACTOR = 1.5
# Enable short cycles.
_C.MULTIGRID.SHORT_CYCLE = False
# Short cycle additional spatial dimensions relative to the default crop size.
_C.MULTIGRID.SHORT_CYCLE_FACTORS = [0.5, 0.5**0.5]
_C.MULTIGRID.LONG_CYCLE = False
# (Temporal, Spatial) dimensions relative to the default shape.
_C.MULTIGRID.LONG_CYCLE_FACTORS = [
(0.25, 0.5**0.5),
(0.5, 0.5**0.5),
(0.5, 1),
(1, 1),
]
# While a standard BN computes stats across all examples in a GPU,
# for multigrid training we fix the number of clips to compute BN stats on.
# See https://arxiv.org/abs/1912.00998 for details.
_C.MULTIGRID.BN_BASE_SIZE = 8
# Multigrid training epochs are not proportional to actual training time or
# computations, so _C.TRAIN.EVAL_PERIOD leads to too frequent or rare
# evaluation. We use a multigrid-specific rule to determine when to evaluate:
# This hyperparameter defines how many times to evaluate a model per long
# cycle shape.
_C.MULTIGRID.EVAL_FREQ = 3
# No need to specify; Set automatically and used as global variables.
_C.MULTIGRID.LONG_CYCLE_SAMPLING_RATE = 0
_C.MULTIGRID.DEFAULT_B = 0
_C.MULTIGRID.DEFAULT_T = 0
_C.MULTIGRID.DEFAULT_S = 0
# -----------------------------------------------------------------------------
# Tensorboard Visualization Options
# -----------------------------------------------------------------------------
_C.TENSORBOARD = CfgNode()
# Log to summary writer, this will automatically.
# log loss, lr and metrics during train/eval.
_C.TENSORBOARD.ENABLE = False
# Provide path to prediction results for visualization.
# This is a pickle file of [prediction_tensor, label_tensor]
_C.TENSORBOARD.PREDICTIONS_PATH = ""
# Path to directory for tensorboard logs.
# Default to to cfg.OUTPUT_DIR/runs-{cfg.TRAIN.DATASET}.
_C.TENSORBOARD.LOG_DIR = ""
# Path to a json file providing class_name - id mapping
# in the format {"class_name1": id1, "class_name2": id2, ...}.
# This file must be provided to enable plotting confusion matrix
# by a subset or parent categories.
_C.TENSORBOARD.CLASS_NAMES_PATH = ""
# Path to a json file for categories -> classes mapping
# in the format {"parent_class": ["child_class1", "child_class2",...], ...}.
_C.TENSORBOARD.CATEGORIES_PATH = ""
# Config for confusion matrices visualization.
_C.TENSORBOARD.CONFUSION_MATRIX = CfgNode()
# Visualize confusion matrix.
_C.TENSORBOARD.CONFUSION_MATRIX.ENABLE = False
# Figure size of the confusion matrices plotted.
_C.TENSORBOARD.CONFUSION_MATRIX.FIGSIZE = [8, 8]
# Path to a subset of categories to visualize.
# File contains class names separated by newline characters.
_C.TENSORBOARD.CONFUSION_MATRIX.SUBSET_PATH = ""
# Config for histogram visualization.
_C.TENSORBOARD.HISTOGRAM = CfgNode()
# Visualize histograms.
_C.TENSORBOARD.HISTOGRAM.ENABLE = False
# Path to a subset of classes to plot histograms.
# Class names must be separated by newline characters.
_C.TENSORBOARD.HISTOGRAM.SUBSET_PATH = ""
# Visualize top-k most predicted classes on histograms for each
# chosen true label.
_C.TENSORBOARD.HISTOGRAM.TOPK = 10
# Figure size of the histograms plotted.
_C.TENSORBOARD.HISTOGRAM.FIGSIZE = [8, 8]
# Config for layers' weights and activations visualization.
# _C.TENSORBOARD.ENABLE must be True.
_C.TENSORBOARD.MODEL_VIS = CfgNode()
# If False, skip model visualization.
_C.TENSORBOARD.MODEL_VIS.ENABLE = False
# If False, skip visualizing model weights.
_C.TENSORBOARD.MODEL_VIS.MODEL_WEIGHTS = False
# If False, skip visualizing model activations.
_C.TENSORBOARD.MODEL_VIS.ACTIVATIONS = False
# If False, skip visualizing input videos.
_C.TENSORBOARD.MODEL_VIS.INPUT_VIDEO = False
# List of strings containing data about layer names and their indexing to
# visualize weights and activations for. The indexing is meant for
# choosing a subset of activations outputed by a layer for visualization.
# If indexing is not specified, visualize all activations outputed by the layer.
# For each string, layer name and indexing is separated by whitespaces.
# e.g.: [layer1 1,2;1,2, layer2, layer3 150,151;3,4]; this means for each array `arr`
# along the batch dimension in `layer1`, we take arr[[1, 2], [1, 2]]
_C.TENSORBOARD.MODEL_VIS.LAYER_LIST = []
# Top-k predictions to plot on videos
_C.TENSORBOARD.MODEL_VIS.TOPK_PREDS = 1
# Colormap to for text boxes and bounding boxes colors
_C.TENSORBOARD.MODEL_VIS.COLORMAP = "Pastel2"
# Config for visualization video inputs with Grad-CAM.
# _C.TENSORBOARD.ENABLE must be True.
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM = CfgNode()
# Whether to run visualization using Grad-CAM technique.
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE = True
# CNN layers to use for Grad-CAM. The number of layers must be equal to
# number of pathway(s).
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST = []
# If True, visualize Grad-CAM using true labels for each instances.
# If False, use the highest predicted class.
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.USE_TRUE_LABEL = False
# Colormap to for text boxes and bounding boxes colors
_C.TENSORBOARD.MODEL_VIS.GRAD_CAM.COLORMAP = "viridis"
# Config for visualization for wrong prediction visualization.
# _C.TENSORBOARD.ENABLE must be True.
_C.TENSORBOARD.WRONG_PRED_VIS = CfgNode()
_C.TENSORBOARD.WRONG_PRED_VIS.ENABLE = False
# Folder tag to origanize model eval videos under.
_C.TENSORBOARD.WRONG_PRED_VIS.TAG = "Incorrectly classified videos."
# Subset of labels to visualize. Only wrong predictions with true labels
# within this subset is visualized.
_C.TENSORBOARD.WRONG_PRED_VIS.SUBSET_PATH = ""
# ---------------------------------------------------------------------------- #
# Demo options
# ---------------------------------------------------------------------------- #
_C.DEMO = CfgNode()
# Run model in DEMO mode.
_C.DEMO.ENABLE = False
# Path to a json file providing class_name - id mapping
# in the format {"class_name1": id1, "class_name2": id2, ...}.
_C.DEMO.LABEL_FILE_PATH = ""
# Specify a camera device as input. This will be prioritized
# over input video if set.
# If -1, use input video instead.
_C.DEMO.WEBCAM = -1
# Path to input video for demo.
_C.DEMO.INPUT_VIDEO = ""
# Custom width for reading input video data.
_C.DEMO.DISPLAY_WIDTH = 0
# Custom height for reading input video data.
_C.DEMO.DISPLAY_HEIGHT = 0
# Path to Detectron2 object detection model configuration,
# only used for detection tasks.
_C.DEMO.DETECTRON2_CFG = "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"
# Path to Detectron2 object detection model pre-trained weights.
_C.DEMO.DETECTRON2_WEIGHTS = "detectron2://COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
# Threshold for choosing predicted bounding boxes by Detectron2.
_C.DEMO.DETECTRON2_THRESH = 0.9
# Number of overlapping frames between 2 consecutive clips.
# Increase this number for more frequent action predictions.
# The number of overlapping frames cannot be larger than
# half of the sequence length `cfg.DATA.NUM_FRAMES * cfg.DATA.SAMPLING_RATE`
_C.DEMO.BUFFER_SIZE = 0
# If specified, the visualized outputs will be written this a video file of
# this path. Otherwise, the visualized outputs will be displayed in a window.
_C.DEMO.OUTPUT_FILE = ""
# Frames per second rate for writing to output video file.
# If not set (-1), use fps rate from input file.
_C.DEMO.OUTPUT_FPS = -1
# Input format from demo video reader ("RGB" or "BGR").
_C.DEMO.INPUT_FORMAT = "BGR"
# Draw visualization frames in [keyframe_idx - CLIP_VIS_SIZE, keyframe_idx + CLIP_VIS_SIZE] inclusively.
_C.DEMO.CLIP_VIS_SIZE = 10
# Number of processes to run video visualizer.
_C.DEMO.NUM_VIS_INSTANCES = 2
# Path to pre-computed predicted boxes
_C.DEMO.PREDS_BOXES = ""
# Whether to run in with multi-threaded video reader.
_C.DEMO.THREAD_ENABLE = False
# Take one clip for every `DEMO.NUM_CLIPS_SKIP` + 1 for prediction and visualization.
# This is used for fast demo speed by reducing the prediction/visualiztion frequency.
# If -1, take the most recent read clip for visualization. This mode is only supported
# if `DEMO.THREAD_ENABLE` is set to True.
_C.DEMO.NUM_CLIPS_SKIP = 0
# Path to ground-truth boxes and labels (optional)
_C.DEMO.GT_BOXES = ""
# The starting second of the video w.r.t bounding boxes file.
_C.DEMO.STARTING_SECOND = 900
# Frames per second of the input video/folder of images.
_C.DEMO.FPS = 30
# Visualize with top-k predictions or predictions above certain threshold(s).
# Option: {"thres", "top-k"}
_C.DEMO.VIS_MODE = "thres"
# Threshold for common class names.
_C.DEMO.COMMON_CLASS_THRES = 0.7
# Theshold for uncommon class names. This will not be
# used if `_C.DEMO.COMMON_CLASS_NAMES` is empty.
_C.DEMO.UNCOMMON_CLASS_THRES = 0.3
# This is chosen based on distribution of examples in
# each classes in AVA dataset.
_C.DEMO.COMMON_CLASS_NAMES = [
"watch (a person)",
"talk to (e.g., self, a person, a group)",
"listen to (a person)",
"touch (an object)",
"carry/hold (an object)",
"walk",
"sit",
"lie/sleep",
"bend/bow (at the waist)",
]
# Slow-motion rate for the visualization. The visualized portions of the
# video will be played `_C.DEMO.SLOWMO` times slower than usual speed.
_C.DEMO.SLOWMO = 1
def assert_and_infer_cfg(cfg):
# BN assertions.
if cfg.BN.USE_PRECISE_STATS:
assert cfg.BN.NUM_BATCHES_PRECISE >= 0
# TRAIN assertions.
assert cfg.TRAIN.CHECKPOINT_TYPE in ["pytorch", "caffe2"]
assert cfg.NUM_GPUS == 0 or cfg.TRAIN.BATCH_SIZE % cfg.NUM_GPUS == 0
# TEST assertions.
assert cfg.TEST.CHECKPOINT_TYPE in ["pytorch", "caffe2"]
assert cfg.NUM_GPUS == 0 or cfg.TEST.BATCH_SIZE % cfg.NUM_GPUS == 0
# RESNET assertions.
assert cfg.RESNET.NUM_GROUPS > 0
assert cfg.RESNET.WIDTH_PER_GROUP > 0
assert cfg.RESNET.WIDTH_PER_GROUP % cfg.RESNET.NUM_GROUPS == 0
# Execute LR scaling by num_shards.
if cfg.SOLVER.BASE_LR_SCALE_NUM_SHARDS:
cfg.SOLVER.BASE_LR *= cfg.NUM_SHARDS
cfg.SOLVER.WARMUP_START_LR *= cfg.NUM_SHARDS
cfg.SOLVER.COSINE_END_LR *= cfg.NUM_SHARDS
# General assertions.
assert cfg.SHARD_ID < cfg.NUM_SHARDS
return cfg
def get_cfg():
return _C.clone()
def load_config(path_to_config=None):
# Setup cfg.
cfg = get_cfg()
# Load config from cfg.
if path_to_config is not None:
cfg.merge_from_file(path_to_config)
return cfg
|