|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
from transformers.models.bert.modeling_bert import BertModel as TransformersBertModel |
|
from transformers.models.bert.modeling_bert import BertForMaskedLM as TransformersBertForMaskedLM |
|
from transformers.models.bert.modeling_bert import BertForPreTraining as TransformersBertForPreTraining |
|
from transformers.models.bert.modeling_bert import BertPreTrainedModel |
|
from transformers.modeling_outputs import SequenceClassifierOutput |
|
|
|
from .configuration_bert import BertConfig |
|
|
|
|
|
class BertModel(TransformersBertModel): |
|
|
|
config_class = BertConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
class BertForMaskedLM(TransformersBertForMaskedLM): |
|
|
|
config_class = BertConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
class BertForPreTraining(TransformersBertForPreTraining): |
|
|
|
config_class = BertConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
|
|
class DNABertForSequenceClassification(BertPreTrainedModel): |
|
|
|
config_class = BertConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.config = config |
|
|
|
self.bert = BertModel(config) |
|
classifier_dropout = ( |
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob |
|
) |
|
self.dropout = nn.Dropout(classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
batch_size, seq_len = input_ids.shape |
|
if seq_len > 512: |
|
assert seq_len % 512 == 0, "seq_len should be a multiple of 512" |
|
|
|
input_ids = input_ids.view(-1, 512) |
|
attention_mask = attention_mask.view(-1, 512) if attention_mask is not None else None |
|
token_type_ids = token_type_ids.view(-1, 512) if token_type_ids is not None else None |
|
position_ids = None |
|
|
|
outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
pooled_output = outputs[1] |
|
|
|
if seq_len > 512: |
|
|
|
pooled_output = pooled_output.view(batch_size, -1, pooled_output.shape[-1]) |
|
|
|
pooled_output = torch.mean(pooled_output, dim=1) |
|
|
|
pooled_output = self.dropout(pooled_output) |
|
logits = self.classifier(pooled_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |