lgq12697
commited on
Commit
•
ffe0ab0
1
Parent(s):
624e5f8
update model
Browse files- README.md +4 -3
- config.json +8 -1
- configuration_mamba.py +157 -0
- modeling_mamba.py +973 -0
README.md
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
widget:
|
4 |
- text: AAAAGCGACATGACCAAACTGCCCCTCACCCGCCGCACTGATGACCGA
|
|
|
5 |
tags:
|
6 |
- DNA
|
7 |
- biology
|
@@ -20,11 +21,11 @@ All the models have a comparable model size between 90 MB and 150 MB, BPE tokeni
|
|
20 |
### Model Sources
|
21 |
|
22 |
- **Repository:** [Plant DNA LLMs](https://github.com/zhangtaolab/plant_DNA_LLMs)
|
23 |
-
- **Manuscript:** [
|
24 |
|
25 |
### Architecture
|
26 |
|
27 |
-
The model is trained based on the
|
28 |
|
29 |
### How to use
|
30 |
|
@@ -33,7 +34,7 @@ Install the runtime library first:
|
|
33 |
pip install transformers
|
34 |
```
|
35 |
|
36 |
-
Here is a simple code for inference:
|
37 |
```python
|
38 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
39 |
import torch
|
|
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
widget:
|
4 |
- text: AAAAGCGACATGACCAAACTGCCCCTCACCCGCCGCACTGATGACCGA
|
5 |
+
inference: false
|
6 |
tags:
|
7 |
- DNA
|
8 |
- biology
|
|
|
21 |
### Model Sources
|
22 |
|
23 |
- **Repository:** [Plant DNA LLMs](https://github.com/zhangtaolab/plant_DNA_LLMs)
|
24 |
+
- **Manuscript:** [PDLLMs: A group of tailored DNA large language models for analyzing plant genomes](https://doi.org/10.1016/j.molp.2024.12.006)
|
25 |
|
26 |
### Architecture
|
27 |
|
28 |
+
The model is trained based on the State-Space Mamba-130m model with modified tokenizer specific for DNA sequence.
|
29 |
|
30 |
### How to use
|
31 |
|
|
|
34 |
pip install transformers
|
35 |
```
|
36 |
|
37 |
+
Here is a simple code for inference (Note that Mamba model requires NVIDIA GPU for inference):
|
38 |
```python
|
39 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
40 |
import torch
|
config.json
CHANGED
@@ -1,8 +1,14 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
"MambaForCausalLM"
|
5 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"bos_token_id": 0,
|
7 |
"conv_kernel": 4,
|
8 |
"d_inner": 1536,
|
@@ -36,5 +42,6 @@
|
|
36 |
"use_bias": false,
|
37 |
"use_cache": true,
|
38 |
"use_conv_bias": true,
|
|
|
39 |
"vocab_size": 267
|
40 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "Plant_DNAMamba_4mer",
|
3 |
"architectures": [
|
4 |
"MambaForCausalLM"
|
5 |
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_mamba.MambaConfig",
|
8 |
+
"AutoModel": "modeling_mamba.MambaModel",
|
9 |
+
"AutoModelForCausalLM": "modeling_mamba.MambaForCausalLM",
|
10 |
+
"AutoModelForSequenceClassification": "modeling_mamba.MambaForSequenceClassification"
|
11 |
+
},
|
12 |
"bos_token_id": 0,
|
13 |
"conv_kernel": 4,
|
14 |
"d_inner": 1536,
|
|
|
42 |
"use_bias": false,
|
43 |
"use_cache": true,
|
44 |
"use_conv_bias": true,
|
45 |
+
"use_mambapy": true,
|
46 |
"vocab_size": 267
|
47 |
}
|
configuration_mamba.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""MAMBA configuration"""
|
16 |
+
|
17 |
+
import math
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
class MambaConfig(PretrainedConfig):
|
27 |
+
"""
|
28 |
+
This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
|
29 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
30 |
+
defaults will yield a similar configuration to that of the MAMBA
|
31 |
+
[state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 50280):
|
39 |
+
Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`MambaModel`].
|
41 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
42 |
+
Dimensionality of the embeddings and hidden states.
|
43 |
+
state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
45 |
+
Number of hidden layers in the model.
|
46 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
47 |
+
The epsilon to use in the layer normalization layers.
|
48 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
49 |
+
Padding token id.
|
50 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
51 |
+
The id of the beginning of sentence token in the vocabulary.
|
52 |
+
eos_token_id (`int`, *optional*, defaults to 0):
|
53 |
+
The id of the end of sentence token in the vocabulary.
|
54 |
+
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
|
55 |
+
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
|
56 |
+
use_bias (`bool`, *optional*, defaults to `False`):
|
57 |
+
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
|
58 |
+
use_conv_bias (`bool`, *optional*, defaults to `True`):
|
59 |
+
Whether or not to use bias in the convolution layer of the mixer block.
|
60 |
+
hidden_act (`str`, *optional*, defaults to `"silu"`):
|
61 |
+
The non-linear activation function (function or string) in the decoder.
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.1):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
|
66 |
+
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
|
67 |
+
Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
|
68 |
+
time_step_scale (`float`, *optional*, defaults to 1.0):
|
69 |
+
Scale used used to scale `dt_proj.bias`.
|
70 |
+
time_step_min (`float`, *optional*, defaults to 0.001):
|
71 |
+
Minimum `time_step` used to bound `dt_proj.bias`.
|
72 |
+
time_step_max (`float`, *optional*, defaults to 0.1):
|
73 |
+
Maximum `time_step` used to bound `dt_proj.bias`.
|
74 |
+
time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
|
75 |
+
Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
|
76 |
+
time_step_floor (`float`, *optional*, defaults to 0.0001):
|
77 |
+
Minimum clamping value of the `dt_proj.bias` layer initialization.
|
78 |
+
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether or not to rescale `out_proj` weights when initializing.
|
80 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
81 |
+
Whether or not the cache should be used.
|
82 |
+
use_mambapy (`bool`, *optional*, defaults to `False`):
|
83 |
+
Determines the fallback strategy during training if the CUDA-based official implementation of Mamba is not avaiable. If `True`, the mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited.
|
84 |
+
|
85 |
+
|
86 |
+
Example:
|
87 |
+
|
88 |
+
```python
|
89 |
+
>>> from transformers import MambaConfig, MambaModel
|
90 |
+
|
91 |
+
>>> # Initializing a Mamba configuration
|
92 |
+
>>> configuration = MambaConfig()
|
93 |
+
|
94 |
+
>>> # Initializing a model (with random weights) from the configuration
|
95 |
+
>>> model = MambaModel(configuration)
|
96 |
+
|
97 |
+
>>> # Accessing the model configuration
|
98 |
+
>>> configuration = model.config
|
99 |
+
```"""
|
100 |
+
|
101 |
+
model_type = "mamba"
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
vocab_size=50280,
|
106 |
+
hidden_size=768,
|
107 |
+
state_size=16,
|
108 |
+
num_hidden_layers=32,
|
109 |
+
layer_norm_epsilon=1e-5,
|
110 |
+
pad_token_id=0,
|
111 |
+
bos_token_id=0,
|
112 |
+
eos_token_id=0,
|
113 |
+
expand=2,
|
114 |
+
conv_kernel=4,
|
115 |
+
use_bias=False,
|
116 |
+
use_conv_bias=True,
|
117 |
+
hidden_act="silu",
|
118 |
+
initializer_range=0.1,
|
119 |
+
residual_in_fp32=True,
|
120 |
+
time_step_rank="auto",
|
121 |
+
time_step_scale=1.0,
|
122 |
+
time_step_min=0.001,
|
123 |
+
time_step_max=0.1,
|
124 |
+
time_step_init_scheme="random",
|
125 |
+
time_step_floor=1e-4,
|
126 |
+
rescale_prenorm_residual=False,
|
127 |
+
use_cache=True,
|
128 |
+
use_mambapy=False,
|
129 |
+
**kwargs,
|
130 |
+
):
|
131 |
+
self.vocab_size = vocab_size
|
132 |
+
self.hidden_size = hidden_size
|
133 |
+
self.state_size = state_size
|
134 |
+
self.num_hidden_layers = num_hidden_layers
|
135 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
136 |
+
self.conv_kernel = conv_kernel
|
137 |
+
self.expand = expand
|
138 |
+
self.intermediate_size = int(expand * self.hidden_size)
|
139 |
+
self.bos_token_id = bos_token_id
|
140 |
+
self.eos_token_id = eos_token_id
|
141 |
+
self.pad_token_id = pad_token_id
|
142 |
+
self.use_bias = use_bias
|
143 |
+
self.use_conv_bias = use_conv_bias
|
144 |
+
self.hidden_act = hidden_act
|
145 |
+
self.initializer_range = initializer_range
|
146 |
+
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
|
147 |
+
self.time_step_scale = time_step_scale
|
148 |
+
self.time_step_min = time_step_min
|
149 |
+
self.time_step_max = time_step_max
|
150 |
+
self.time_step_init_scheme = time_step_init_scheme
|
151 |
+
self.time_step_floor = time_step_floor
|
152 |
+
self.rescale_prenorm_residual = rescale_prenorm_residual
|
153 |
+
self.residual_in_fp32 = residual_in_fp32
|
154 |
+
self.use_cache = use_cache
|
155 |
+
self.use_mambapy = use_mambapy
|
156 |
+
|
157 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
|
modeling_mamba.py
ADDED
@@ -0,0 +1,973 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""PyTorch MAMBA model."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.cache_utils import MambaCache
|
28 |
+
from transformers.modeling_utils import PreTrainedModel
|
29 |
+
from transformers.utils import (
|
30 |
+
ModelOutput,
|
31 |
+
add_code_sample_docstrings,
|
32 |
+
add_start_docstrings,
|
33 |
+
add_start_docstrings_to_model_forward,
|
34 |
+
logging,
|
35 |
+
replace_return_docstrings,
|
36 |
+
)
|
37 |
+
from transformers.utils.import_utils import is_causal_conv1d_available, is_mamba_ssm_available, is_mambapy_available
|
38 |
+
from .configuration_mamba import MambaConfig
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
# Check if we can use the fast path
|
44 |
+
if is_mambapy_available():
|
45 |
+
try:
|
46 |
+
from mambapy.pscan import pscan
|
47 |
+
except ImportError:
|
48 |
+
pscan = None
|
49 |
+
else:
|
50 |
+
pscan = None
|
51 |
+
|
52 |
+
if is_mamba_ssm_available():
|
53 |
+
try:
|
54 |
+
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
|
55 |
+
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
56 |
+
except ImportError:
|
57 |
+
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
|
58 |
+
else:
|
59 |
+
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
|
60 |
+
|
61 |
+
if is_causal_conv1d_available():
|
62 |
+
try:
|
63 |
+
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
64 |
+
except ImportError:
|
65 |
+
causal_conv1d_update, causal_conv1d_fn = None, None
|
66 |
+
else:
|
67 |
+
causal_conv1d_update, causal_conv1d_fn = None, None
|
68 |
+
|
69 |
+
is_fast_path_available = all(
|
70 |
+
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
|
71 |
+
)
|
72 |
+
|
73 |
+
|
74 |
+
_CHECKPOINT_FOR_DOC = "state-spaces/mamba-130m-hf"
|
75 |
+
_CONFIG_FOR_DOC = "MambaConfig"
|
76 |
+
|
77 |
+
|
78 |
+
class MambaMixer(nn.Module):
|
79 |
+
"""
|
80 |
+
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
|
81 |
+
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
82 |
+
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
|
83 |
+
and is why Mamba is called **selective** state spaces)
|
84 |
+
"""
|
85 |
+
|
86 |
+
def __init__(self, config: MambaConfig, layer_idx: int):
|
87 |
+
super().__init__()
|
88 |
+
self.config = config
|
89 |
+
self.hidden_size = config.hidden_size
|
90 |
+
self.ssm_state_size = config.state_size
|
91 |
+
self.conv_kernel_size = config.conv_kernel
|
92 |
+
self.intermediate_size = config.intermediate_size
|
93 |
+
self.time_step_rank = int(config.time_step_rank)
|
94 |
+
self.layer_idx = layer_idx
|
95 |
+
self.use_conv_bias = config.use_conv_bias
|
96 |
+
self.conv1d = nn.Conv1d(
|
97 |
+
in_channels=self.intermediate_size,
|
98 |
+
out_channels=self.intermediate_size,
|
99 |
+
bias=config.use_conv_bias,
|
100 |
+
kernel_size=config.conv_kernel,
|
101 |
+
groups=self.intermediate_size,
|
102 |
+
padding=config.conv_kernel - 1,
|
103 |
+
)
|
104 |
+
|
105 |
+
self.activation = config.hidden_act
|
106 |
+
self.act = ACT2FN[config.hidden_act]
|
107 |
+
|
108 |
+
self.use_mambapy = config.use_mambapy
|
109 |
+
|
110 |
+
# projection of the input hidden states
|
111 |
+
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias)
|
112 |
+
# selective projection used to make dt, B and C input dependant
|
113 |
+
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
114 |
+
# time step projection (discretization)
|
115 |
+
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
|
116 |
+
|
117 |
+
# S4D real initialization. These are not discretized!
|
118 |
+
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
119 |
+
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
|
120 |
+
A = A.expand(self.intermediate_size, -1).contiguous()
|
121 |
+
|
122 |
+
self.A_log = nn.Parameter(torch.log(A))
|
123 |
+
self.D = nn.Parameter(torch.ones(self.intermediate_size))
|
124 |
+
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
125 |
+
self.use_bias = config.use_bias
|
126 |
+
|
127 |
+
if not is_fast_path_available:
|
128 |
+
if self.use_mambapy:
|
129 |
+
if is_mambapy_available():
|
130 |
+
logger.warning_once(
|
131 |
+
"The fast path is not available because one of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
|
132 |
+
" is None. Falling back to the mamba.py backend. To install follow https://github.com/state-spaces/mamba/#installation and"
|
133 |
+
" https://github.com/Dao-AILab/causal-conv1d"
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
raise ImportError(
|
137 |
+
"use_mambapy is set to True but the mambapy package is not installed. To install it follow https://github.com/alxndrTL/mamba.py."
|
138 |
+
)
|
139 |
+
else:
|
140 |
+
logger.warning_once(
|
141 |
+
"The fast path is not available because one of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
|
142 |
+
" is None. Falling back to the sequential implementation of Mamba, as use_mambapy is set to False. To install follow https://github.com/state-spaces/mamba/#installation and"
|
143 |
+
" https://github.com/Dao-AILab/causal-conv1d. For the mamba.py backend, follow https://github.com/alxndrTL/mamba.py."
|
144 |
+
)
|
145 |
+
|
146 |
+
def cuda_kernels_forward(
|
147 |
+
self,
|
148 |
+
hidden_states: torch.Tensor,
|
149 |
+
cache_params: Optional[MambaCache] = None,
|
150 |
+
cache_position: Optional[torch.LongTensor] = None,
|
151 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
152 |
+
):
|
153 |
+
# 1. Gated MLP's linear projection
|
154 |
+
projected_states = self.in_proj(hidden_states).transpose(1, 2)
|
155 |
+
|
156 |
+
if self.training and cache_params is None: # Doesn't support outputting the states -> used for training
|
157 |
+
contextualized_states = mamba_inner_fn(
|
158 |
+
projected_states,
|
159 |
+
self.conv1d.weight,
|
160 |
+
self.conv1d.bias if self.use_conv_bias else None,
|
161 |
+
self.x_proj.weight,
|
162 |
+
self.dt_proj.weight,
|
163 |
+
self.out_proj.weight,
|
164 |
+
self.out_proj.bias.float() if self.use_bias else None,
|
165 |
+
-torch.exp(self.A_log.float()),
|
166 |
+
None, # input-dependent B
|
167 |
+
None, # input-dependent C
|
168 |
+
self.D.float(),
|
169 |
+
delta_bias=self.dt_proj.bias.float(),
|
170 |
+
delta_softplus=True,
|
171 |
+
)
|
172 |
+
|
173 |
+
else:
|
174 |
+
hidden_states, gate = projected_states.chunk(2, dim=1)
|
175 |
+
|
176 |
+
if attention_mask is not None:
|
177 |
+
hidden_states = hidden_states * attention_mask.unsqueeze(1)
|
178 |
+
|
179 |
+
# 2. Convolution sequence transformation
|
180 |
+
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
|
181 |
+
if cache_params is not None and cache_position[0] > 0:
|
182 |
+
hidden_states = causal_conv1d_update(
|
183 |
+
hidden_states.squeeze(-1),
|
184 |
+
cache_params.conv_states[self.layer_idx],
|
185 |
+
conv_weights,
|
186 |
+
self.conv1d.bias,
|
187 |
+
self.activation,
|
188 |
+
)
|
189 |
+
hidden_states = hidden_states.unsqueeze(-1)
|
190 |
+
else:
|
191 |
+
if cache_params is not None:
|
192 |
+
conv_states = nn.functional.pad(
|
193 |
+
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
|
194 |
+
)
|
195 |
+
cache_params.update_conv_state(self.layer_idx, conv_states, cache_position)
|
196 |
+
hidden_states = causal_conv1d_fn(
|
197 |
+
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
|
198 |
+
)
|
199 |
+
|
200 |
+
if attention_mask is not None:
|
201 |
+
hidden_states = hidden_states * attention_mask.unsqueeze(1)
|
202 |
+
|
203 |
+
# 3. State Space Model sequence transformation
|
204 |
+
# 3.a. input varying initialization of time_step, B and C
|
205 |
+
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
|
206 |
+
time_step, B, C = torch.split(
|
207 |
+
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
208 |
+
)
|
209 |
+
discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)
|
210 |
+
|
211 |
+
A = -torch.exp(self.A_log.float())
|
212 |
+
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
213 |
+
time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None
|
214 |
+
if cache_params is not None and cache_position[0] > 0:
|
215 |
+
scan_outputs = selective_state_update(
|
216 |
+
cache_params.ssm_states[self.layer_idx],
|
217 |
+
hidden_states[..., 0],
|
218 |
+
discrete_time_step[..., 0],
|
219 |
+
A,
|
220 |
+
B[:, 0],
|
221 |
+
C[:, 0],
|
222 |
+
self.D,
|
223 |
+
gate[..., 0],
|
224 |
+
time_proj_bias,
|
225 |
+
dt_softplus=True,
|
226 |
+
).unsqueeze(-1)
|
227 |
+
else:
|
228 |
+
scan_outputs, ssm_state = selective_scan_fn(
|
229 |
+
hidden_states,
|
230 |
+
discrete_time_step,
|
231 |
+
A,
|
232 |
+
B.transpose(1, 2),
|
233 |
+
C.transpose(1, 2),
|
234 |
+
self.D.float(),
|
235 |
+
gate,
|
236 |
+
time_proj_bias,
|
237 |
+
delta_softplus=True,
|
238 |
+
return_last_state=True,
|
239 |
+
)
|
240 |
+
if ssm_state is not None and cache_params is not None:
|
241 |
+
cache_params.update_ssm_state(self.layer_idx, ssm_state)
|
242 |
+
|
243 |
+
# 4. Final linear projection
|
244 |
+
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
|
245 |
+
return contextualized_states
|
246 |
+
|
247 |
+
# fmt: off
|
248 |
+
def slow_forward(self, input_states, cache_params: Optional[MambaCache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.LongTensor] = None):
|
249 |
+
batch_size, seq_len, _ = input_states.shape
|
250 |
+
dtype = input_states.dtype
|
251 |
+
# 1. Gated MLP's linear projection
|
252 |
+
projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len]
|
253 |
+
hidden_states, gate = projected_states.chunk(2, dim=1)
|
254 |
+
|
255 |
+
if attention_mask is not None:
|
256 |
+
hidden_states = hidden_states * attention_mask.unsqueeze(1)
|
257 |
+
|
258 |
+
# 2. Convolution sequence transformation
|
259 |
+
if cache_params is not None:
|
260 |
+
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
261 |
+
ssm_state = ssm_state.to(hidden_states.device)
|
262 |
+
# use `cache_position.shape[0]` to check whether we are in prefill
|
263 |
+
# stage, it's equivalent to check `cache_position[0] == 0`, which
|
264 |
+
# breaks dynamo fullgraph constraints
|
265 |
+
if cache_position.shape[0] == self.conv_kernel_size:
|
266 |
+
conv_state = nn.functional.pad(
|
267 |
+
hidden_states,
|
268 |
+
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
269 |
+
)
|
270 |
+
|
271 |
+
cache_params.update_conv_state(self.layer_idx, conv_state, cache_position)
|
272 |
+
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
273 |
+
else:
|
274 |
+
conv_state = cache_params.update_conv_state(self.layer_idx, hidden_states, cache_position)
|
275 |
+
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
276 |
+
if self.use_conv_bias:
|
277 |
+
hidden_states += self.conv1d.bias
|
278 |
+
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding
|
279 |
+
else:
|
280 |
+
ssm_state = torch.zeros(
|
281 |
+
(batch_size, self.intermediate_size, self.ssm_state_size),
|
282 |
+
device=hidden_states.device, dtype=dtype
|
283 |
+
)
|
284 |
+
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len]
|
285 |
+
|
286 |
+
if attention_mask is not None:
|
287 |
+
hidden_states = hidden_states * attention_mask.unsqueeze(1)
|
288 |
+
|
289 |
+
# 3. State Space Model sequence transformation
|
290 |
+
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
|
291 |
+
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
|
292 |
+
time_step, B, C = torch.split(
|
293 |
+
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
294 |
+
)
|
295 |
+
discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size]
|
296 |
+
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len]
|
297 |
+
|
298 |
+
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
|
299 |
+
A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size]
|
300 |
+
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size]
|
301 |
+
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediate_size, seq_len, ssm_state_size]
|
302 |
+
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
|
303 |
+
|
304 |
+
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
305 |
+
if self.use_mambapy and self.training and cache_params is None:
|
306 |
+
hs = pscan(discrete_A.transpose(1, 2), deltaB_u.transpose(1, 2)) # [batch, seq_len, intermediate_size, ssm_state_size]
|
307 |
+
|
308 |
+
scan_output = (hs @ C.unsqueeze(-1)).squeeze(3).transpose(1, 2) # [batch, intermediate_size, seq_len]
|
309 |
+
scan_output = scan_output + hidden_states * self.D[None, :, None]
|
310 |
+
scan_output = scan_output * self.act(gate)
|
311 |
+
else:
|
312 |
+
scan_outputs = []
|
313 |
+
for i in range(seq_len):
|
314 |
+
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediade_size, ssm_state]
|
315 |
+
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediade_size, 1]
|
316 |
+
scan_outputs.append(scan_output[:, :, 0])
|
317 |
+
scan_output = torch.stack(scan_outputs, dim=-1) # [batch, seq_len, intermediade_size]
|
318 |
+
scan_output = scan_output + (hidden_states * self.D[None, :, None])
|
319 |
+
scan_output = (scan_output * self.act(gate))
|
320 |
+
|
321 |
+
if cache_params is not None:
|
322 |
+
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
323 |
+
|
324 |
+
# 4. Final linear projection
|
325 |
+
contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size]
|
326 |
+
return contextualized_states
|
327 |
+
# fmt: on
|
328 |
+
|
329 |
+
def forward(
|
330 |
+
self,
|
331 |
+
hidden_states,
|
332 |
+
cache_params: Optional[MambaCache] = None,
|
333 |
+
cache_position: Optional[torch.LongTensor] = None,
|
334 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
335 |
+
):
|
336 |
+
if is_fast_path_available and "cuda" in self.x_proj.weight.device.type and not torch._dynamo.is_compiling():
|
337 |
+
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
|
338 |
+
return self.slow_forward(hidden_states, cache_params, cache_position, attention_mask)
|
339 |
+
|
340 |
+
|
341 |
+
class MambaRMSNorm(nn.Module):
|
342 |
+
def __init__(self, hidden_size, eps=1e-6):
|
343 |
+
"""
|
344 |
+
MambaRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
|
345 |
+
"""
|
346 |
+
super().__init__()
|
347 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
348 |
+
self.variance_epsilon = eps
|
349 |
+
|
350 |
+
def forward(self, hidden_states):
|
351 |
+
input_dtype = hidden_states.dtype
|
352 |
+
hidden_states = hidden_states.to(torch.float32)
|
353 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
354 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
355 |
+
return self.weight * hidden_states.to(input_dtype)
|
356 |
+
|
357 |
+
def extra_repr(self):
|
358 |
+
return f"{self.weight.shape[0]}, eps={self.variance_epsilon}"
|
359 |
+
|
360 |
+
|
361 |
+
class MambaBlock(nn.Module):
|
362 |
+
def __init__(self, config, layer_idx):
|
363 |
+
super().__init__()
|
364 |
+
self.config = config
|
365 |
+
self.layer_idx = layer_idx
|
366 |
+
self.residual_in_fp32 = config.residual_in_fp32
|
367 |
+
self.norm = MambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
368 |
+
self.mixer = MambaMixer(config, layer_idx=layer_idx)
|
369 |
+
|
370 |
+
def forward(
|
371 |
+
self,
|
372 |
+
hidden_states,
|
373 |
+
cache_params: Optional[MambaCache] = None,
|
374 |
+
cache_position: Optional[torch.LongTensor] = None,
|
375 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
376 |
+
):
|
377 |
+
residual = hidden_states
|
378 |
+
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
|
379 |
+
if self.residual_in_fp32:
|
380 |
+
residual = residual.to(torch.float32)
|
381 |
+
|
382 |
+
hidden_states = self.mixer(
|
383 |
+
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
|
384 |
+
)
|
385 |
+
hidden_states = residual + hidden_states
|
386 |
+
return hidden_states
|
387 |
+
|
388 |
+
|
389 |
+
class MambaPreTrainedModel(PreTrainedModel):
|
390 |
+
"""
|
391 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
392 |
+
models.
|
393 |
+
"""
|
394 |
+
|
395 |
+
config_class = MambaConfig
|
396 |
+
base_model_prefix = "backbone"
|
397 |
+
_no_split_modules = ["MambaBlock", "MambaMixer"]
|
398 |
+
supports_gradient_checkpointing = True
|
399 |
+
_is_stateful = True
|
400 |
+
|
401 |
+
def _init_weights(self, module):
|
402 |
+
"""Initialize the weights."""
|
403 |
+
if isinstance(module, MambaMixer):
|
404 |
+
module.A_log._no_weight_decay = True
|
405 |
+
module.D._no_weight_decay = True
|
406 |
+
|
407 |
+
dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale
|
408 |
+
if self.config.time_step_init_scheme == "constant":
|
409 |
+
nn.init.constant_(module.dt_proj.weight, dt_init_std)
|
410 |
+
elif self.config.time_step_init_scheme == "random":
|
411 |
+
nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std)
|
412 |
+
|
413 |
+
dt = torch.exp(
|
414 |
+
torch.rand(self.config.intermediate_size)
|
415 |
+
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
|
416 |
+
+ math.log(self.config.time_step_min)
|
417 |
+
).clamp(min=self.config.time_step_floor)
|
418 |
+
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
419 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
420 |
+
with torch.no_grad():
|
421 |
+
module.dt_proj.bias.copy_(inv_dt)
|
422 |
+
module.dt_proj.bias._no_reinit = True
|
423 |
+
|
424 |
+
if isinstance(module, nn.Linear):
|
425 |
+
if module.bias is not None:
|
426 |
+
if not getattr(module.bias, "_no_reinit", False):
|
427 |
+
nn.init.zeros_(module.bias)
|
428 |
+
elif isinstance(module, nn.Embedding):
|
429 |
+
nn.init.normal_(module.weight, std=self.config.initializer_range)
|
430 |
+
|
431 |
+
if self.config.rescale_prenorm_residual:
|
432 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
433 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
434 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
435 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
436 |
+
#
|
437 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
438 |
+
for name, p in module.named_parameters():
|
439 |
+
if name in ["out_proj.weight"]:
|
440 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
441 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
442 |
+
# We need to reinit p since this code could be called multiple times
|
443 |
+
# Having just p *= scale would repeatedly scale it down
|
444 |
+
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
445 |
+
with torch.no_grad():
|
446 |
+
p /= math.sqrt(self.config.num_hidden_layers)
|
447 |
+
|
448 |
+
|
449 |
+
@dataclass
|
450 |
+
class MambaOutput(ModelOutput):
|
451 |
+
"""
|
452 |
+
Class for the MAMBA model outputs.
|
453 |
+
|
454 |
+
Args:
|
455 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
456 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
457 |
+
cache_params (`MambaCache`):
|
458 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
459 |
+
avoid providing the old `input_ids`.
|
460 |
+
|
461 |
+
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
462 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
463 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
464 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
465 |
+
|
466 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
467 |
+
"""
|
468 |
+
|
469 |
+
last_hidden_state: Optional[torch.FloatTensor] = None
|
470 |
+
cache_params: Optional[MambaCache] = None
|
471 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
472 |
+
|
473 |
+
|
474 |
+
@dataclass
|
475 |
+
class MambaSequenceClassifierOutput(ModelOutput):
|
476 |
+
"""
|
477 |
+
Base class for outputs of sentence classification models.
|
478 |
+
|
479 |
+
Args:
|
480 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
481 |
+
Classification (or regression if config.num_labels==1) loss.
|
482 |
+
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
483 |
+
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
484 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
485 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
486 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
487 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
488 |
+
cache_params (`MambaCache`):
|
489 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
490 |
+
avoid providing the old `input_ids`.
|
491 |
+
"""
|
492 |
+
|
493 |
+
loss: Optional[torch.FloatTensor] = None
|
494 |
+
logits: torch.FloatTensor = None
|
495 |
+
cache_params: Optional[MambaCache] = None
|
496 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
497 |
+
|
498 |
+
|
499 |
+
@dataclass
|
500 |
+
class MambaCausalLMOutput(ModelOutput):
|
501 |
+
"""
|
502 |
+
Base class for causal language model (or autoregressive) outputs.
|
503 |
+
|
504 |
+
Args:
|
505 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
506 |
+
Language modeling loss (for next-token prediction).
|
507 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
508 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
509 |
+
cache_params (`MambaCache`):
|
510 |
+
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
511 |
+
avoid providing the old `input_ids`.
|
512 |
+
|
513 |
+
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
514 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
515 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
516 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
517 |
+
|
518 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
519 |
+
"""
|
520 |
+
|
521 |
+
loss: Optional[torch.FloatTensor] = None
|
522 |
+
logits: Optional[torch.FloatTensor] = None
|
523 |
+
cache_params: Optional[MambaCache] = None
|
524 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
525 |
+
|
526 |
+
|
527 |
+
MAMBA_START_DOCSTRING = r"""
|
528 |
+
|
529 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
530 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
531 |
+
etc.)
|
532 |
+
|
533 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
534 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
535 |
+
and behavior.
|
536 |
+
|
537 |
+
Parameters:
|
538 |
+
config ([`MambaConfig`]): Model configuration class with all the parameters of the model.
|
539 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
540 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
541 |
+
"""
|
542 |
+
|
543 |
+
MAMBA_INPUTS_DOCSTRING = r"""
|
544 |
+
Args:
|
545 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
546 |
+
Indices of input sequence tokens in the vocabulary.
|
547 |
+
|
548 |
+
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
|
549 |
+
`input_ids`.
|
550 |
+
|
551 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
552 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
553 |
+
|
554 |
+
[What are input IDs?](../glossary#input-ids)
|
555 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
556 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
557 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
558 |
+
model's internal embedding lookup matrix.
|
559 |
+
cache_params (`MambaCache`, *optional*):
|
560 |
+
If passed along, the model uses the previous state in all the blocks (which will give the output for the
|
561 |
+
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
|
562 |
+
use_cache (`bool`, *optional*):
|
563 |
+
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
|
564 |
+
output_hidden_states (`bool`, *optional*):
|
565 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
566 |
+
more detail.
|
567 |
+
return_dict (`bool`, *optional*):
|
568 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
569 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
570 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
571 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
572 |
+
the complete sequence length.
|
573 |
+
"""
|
574 |
+
|
575 |
+
|
576 |
+
@add_start_docstrings(
|
577 |
+
"The bare MAMBA Model transformer outputting raw hidden-states without any specific head on top.",
|
578 |
+
MAMBA_START_DOCSTRING,
|
579 |
+
)
|
580 |
+
class MambaModel(MambaPreTrainedModel):
|
581 |
+
def __init__(self, config):
|
582 |
+
super().__init__(config)
|
583 |
+
|
584 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
585 |
+
self.layers = nn.ModuleList([MambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
586 |
+
|
587 |
+
self.gradient_checkpointing = False
|
588 |
+
self.norm_f = MambaRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
589 |
+
# Initialize weights and apply final processing
|
590 |
+
self._register_load_state_dict_pre_hook(self.load_hook)
|
591 |
+
self.post_init()
|
592 |
+
|
593 |
+
def load_hook(self, state_dict, prefix, *args):
|
594 |
+
for k in state_dict:
|
595 |
+
if "embedding." in k:
|
596 |
+
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
|
597 |
+
break
|
598 |
+
|
599 |
+
def get_input_embeddings(self):
|
600 |
+
return self.embeddings
|
601 |
+
|
602 |
+
def set_input_embeddings(self, new_embeddings):
|
603 |
+
self.embeddings = new_embeddings
|
604 |
+
|
605 |
+
@add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING)
|
606 |
+
@add_code_sample_docstrings(
|
607 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
608 |
+
output_type=MambaOutput,
|
609 |
+
config_class=_CONFIG_FOR_DOC,
|
610 |
+
)
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
input_ids: Optional[torch.LongTensor] = None,
|
614 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
615 |
+
cache_params: Optional[MambaCache] = None,
|
616 |
+
use_cache: Optional[bool] = None,
|
617 |
+
output_hidden_states: Optional[bool] = None,
|
618 |
+
return_dict: Optional[bool] = None,
|
619 |
+
cache_position: Optional[torch.LongTensor] = None,
|
620 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
621 |
+
) -> Union[Tuple, MambaOutput]:
|
622 |
+
output_hidden_states = (
|
623 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
624 |
+
)
|
625 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
626 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
627 |
+
|
628 |
+
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
|
629 |
+
raise ValueError(
|
630 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
631 |
+
)
|
632 |
+
|
633 |
+
if inputs_embeds is None:
|
634 |
+
inputs_embeds = self.embeddings(input_ids)
|
635 |
+
|
636 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
637 |
+
use_cache = False
|
638 |
+
|
639 |
+
if use_cache:
|
640 |
+
if cache_params is None:
|
641 |
+
cache_params = MambaCache(
|
642 |
+
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
643 |
+
)
|
644 |
+
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
|
645 |
+
elif cache_position is None:
|
646 |
+
# cases when we do manual forward instead of using `model.generate` which will initiate
|
647 |
+
# `cache_position` and makes sure it is not None, throw error here instead of doing some
|
648 |
+
# hack to conjecture the current cache position
|
649 |
+
raise ValueError(
|
650 |
+
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
|
651 |
+
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
|
652 |
+
"be initialized for you automatically"
|
653 |
+
)
|
654 |
+
else:
|
655 |
+
cache_params = None
|
656 |
+
|
657 |
+
hidden_states = inputs_embeds
|
658 |
+
all_hidden_states = () if output_hidden_states else None
|
659 |
+
for mixer_block in self.layers:
|
660 |
+
if self.gradient_checkpointing and self.training:
|
661 |
+
hidden_states = self._gradient_checkpointing_func(
|
662 |
+
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
|
663 |
+
)
|
664 |
+
else:
|
665 |
+
hidden_states = mixer_block(
|
666 |
+
hidden_states,
|
667 |
+
cache_params=cache_params,
|
668 |
+
cache_position=cache_position,
|
669 |
+
attention_mask=attention_mask,
|
670 |
+
)
|
671 |
+
|
672 |
+
if output_hidden_states:
|
673 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
674 |
+
|
675 |
+
hidden_states = self.norm_f(hidden_states)
|
676 |
+
|
677 |
+
if output_hidden_states:
|
678 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
679 |
+
|
680 |
+
if not return_dict:
|
681 |
+
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
|
682 |
+
|
683 |
+
return MambaOutput(
|
684 |
+
last_hidden_state=hidden_states,
|
685 |
+
cache_params=cache_params if use_cache else None,
|
686 |
+
hidden_states=all_hidden_states,
|
687 |
+
)
|
688 |
+
|
689 |
+
|
690 |
+
@add_start_docstrings(
|
691 |
+
"""
|
692 |
+
The MAMBA Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
693 |
+
embeddings).
|
694 |
+
""",
|
695 |
+
MAMBA_START_DOCSTRING,
|
696 |
+
)
|
697 |
+
class MambaForCausalLM(MambaPreTrainedModel):
|
698 |
+
_tied_weights_keys = ["lm_head.weight"]
|
699 |
+
|
700 |
+
def __init__(self, config):
|
701 |
+
super().__init__(config)
|
702 |
+
self.backbone = MambaModel(config)
|
703 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
704 |
+
# Initialize weights and apply final processing
|
705 |
+
self.post_init()
|
706 |
+
|
707 |
+
def get_output_embeddings(self):
|
708 |
+
return self.lm_head
|
709 |
+
|
710 |
+
def set_output_embeddings(self, new_embeddings):
|
711 |
+
self.lm_head = new_embeddings
|
712 |
+
|
713 |
+
def get_input_embeddings(self):
|
714 |
+
return self.backbone.get_input_embeddings()
|
715 |
+
|
716 |
+
def set_input_embeddings(self, new_embeddings):
|
717 |
+
return self.backbone.set_input_embeddings(new_embeddings)
|
718 |
+
|
719 |
+
def _update_model_kwargs_for_generation(
|
720 |
+
self, outputs: ModelOutput, model_kwargs: Dict[str, Any], num_new_tokens: int = 1, **kwargs
|
721 |
+
) -> Dict[str, Any]:
|
722 |
+
model_kwargs["cache_params"] = outputs.get("cache_params", None)
|
723 |
+
if (
|
724 |
+
model_kwargs.get("use_cache", True)
|
725 |
+
and "cache_position" in model_kwargs
|
726 |
+
and model_kwargs["cache_position"] is not None
|
727 |
+
):
|
728 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
|
729 |
+
|
730 |
+
if "attention_mask" in model_kwargs:
|
731 |
+
attention_mask = model_kwargs["attention_mask"]
|
732 |
+
model_kwargs["attention_mask"] = torch.cat(
|
733 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
|
734 |
+
)
|
735 |
+
|
736 |
+
return model_kwargs
|
737 |
+
|
738 |
+
def prepare_inputs_for_generation(
|
739 |
+
self,
|
740 |
+
input_ids,
|
741 |
+
inputs_embeds=None,
|
742 |
+
use_cache=None,
|
743 |
+
cache_params: Optional[MambaCache] = None,
|
744 |
+
cache_position: Optional[torch.LongTensor] = None,
|
745 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
746 |
+
**kwargs,
|
747 |
+
):
|
748 |
+
if use_cache:
|
749 |
+
# `cache_position` should have been initialized in `generate`
|
750 |
+
if cache_position is None:
|
751 |
+
raise ValueError(
|
752 |
+
"`cache_position` should not be None as it should have been initialized in "
|
753 |
+
"`model.generate`, you are responsible for passing in a valid `cache_position` if "
|
754 |
+
"you are calling `prepare_inputs_for_generation` directly with `use_cache=True`"
|
755 |
+
)
|
756 |
+
if cache_position[0] > 0:
|
757 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
758 |
+
|
759 |
+
if attention_mask is not None:
|
760 |
+
attention_mask = None
|
761 |
+
|
762 |
+
else:
|
763 |
+
# we initialize the `cache_position` to full size of `conv_states` at prefill stage
|
764 |
+
# considering padding will be applied when input length is shorter, and truncation
|
765 |
+
# will be applied when it is longer, so it will be equivalent to always have it match
|
766 |
+
# the length of `cache_params.conv_states`, which is `config.conv_kernel`
|
767 |
+
cache_position = torch.arange(0, self.config.conv_kernel, device=input_ids.device)
|
768 |
+
|
769 |
+
if inputs_embeds is not None and cache_params is None:
|
770 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
771 |
+
else:
|
772 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
773 |
+
|
774 |
+
model_inputs.update(
|
775 |
+
{
|
776 |
+
"cache_params": cache_params,
|
777 |
+
"use_cache": use_cache,
|
778 |
+
"cache_position": cache_position,
|
779 |
+
"attention_mask": attention_mask,
|
780 |
+
}
|
781 |
+
)
|
782 |
+
return model_inputs
|
783 |
+
|
784 |
+
@add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING)
|
785 |
+
@add_code_sample_docstrings(
|
786 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
787 |
+
output_type=MambaCausalLMOutput,
|
788 |
+
config_class=_CONFIG_FOR_DOC,
|
789 |
+
)
|
790 |
+
def forward(
|
791 |
+
self,
|
792 |
+
input_ids: Optional[torch.LongTensor] = None,
|
793 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
794 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
795 |
+
cache_params: Optional[MambaCache] = None,
|
796 |
+
labels: Optional[torch.LongTensor] = None,
|
797 |
+
output_hidden_states: Optional[bool] = None,
|
798 |
+
return_dict: Optional[bool] = None,
|
799 |
+
use_cache: Optional[bool] = None,
|
800 |
+
cache_position: Optional[torch.Tensor] = None,
|
801 |
+
**kwargs, # for now we need this for generation
|
802 |
+
) -> Union[Tuple, MambaCausalLMOutput]:
|
803 |
+
r"""
|
804 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
805 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
806 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
807 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
808 |
+
"""
|
809 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
810 |
+
|
811 |
+
mamba_outputs = self.backbone(
|
812 |
+
input_ids,
|
813 |
+
cache_params=cache_params,
|
814 |
+
inputs_embeds=inputs_embeds,
|
815 |
+
output_hidden_states=output_hidden_states,
|
816 |
+
return_dict=return_dict,
|
817 |
+
use_cache=use_cache,
|
818 |
+
cache_position=cache_position,
|
819 |
+
attention_mask=attention_mask,
|
820 |
+
)
|
821 |
+
hidden_states = mamba_outputs[0]
|
822 |
+
|
823 |
+
logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
|
824 |
+
|
825 |
+
loss = None
|
826 |
+
if labels is not None:
|
827 |
+
# move labels to correct device to enable model parallelism
|
828 |
+
labels = labels.to(logits.device)
|
829 |
+
# Shift so that tokens < n predict n
|
830 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
831 |
+
shift_labels = labels[..., 1:].contiguous()
|
832 |
+
# Flatten the tokens
|
833 |
+
loss_fct = CrossEntropyLoss()
|
834 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
835 |
+
|
836 |
+
if not return_dict:
|
837 |
+
output = (logits,) + mamba_outputs[1:]
|
838 |
+
return ((loss,) + output) if loss is not None else output
|
839 |
+
|
840 |
+
return MambaCausalLMOutput(
|
841 |
+
loss=loss,
|
842 |
+
logits=logits,
|
843 |
+
cache_params=mamba_outputs.cache_params,
|
844 |
+
hidden_states=mamba_outputs.hidden_states,
|
845 |
+
)
|
846 |
+
|
847 |
+
|
848 |
+
@add_start_docstrings(
|
849 |
+
"""
|
850 |
+
Mamba Model backbone with a sequence classification/regression head on top
|
851 |
+
(a linear layer on top of the pooled output) e.g. for GLUE tasks.
|
852 |
+
|
853 |
+
[`MambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
854 |
+
(e.g. GPT-2) do.
|
855 |
+
|
856 |
+
Since it does classification on the last token, it requires to know the position of the last token.
|
857 |
+
If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row.
|
858 |
+
If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
859 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
860 |
+
each row of the batch).
|
861 |
+
""",
|
862 |
+
MAMBA_START_DOCSTRING,
|
863 |
+
)
|
864 |
+
class MambaForSequenceClassification(MambaPreTrainedModel):
|
865 |
+
def __init__(self, config):
|
866 |
+
super().__init__(config)
|
867 |
+
self.num_labels = config.num_labels
|
868 |
+
self.config = config
|
869 |
+
self.backbone = MambaModel(config)
|
870 |
+
self.classifier = nn.Linear(config.hidden_size, self.num_labels, bias=True)
|
871 |
+
|
872 |
+
# Initialize weights and apply final processing
|
873 |
+
self.post_init()
|
874 |
+
|
875 |
+
@add_start_docstrings_to_model_forward(MAMBA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
876 |
+
@replace_return_docstrings(output_type=MambaSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
877 |
+
@add_code_sample_docstrings(
|
878 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
879 |
+
output_type=MambaSequenceClassifierOutput,
|
880 |
+
config_class=_CONFIG_FOR_DOC,
|
881 |
+
)
|
882 |
+
def forward(
|
883 |
+
self,
|
884 |
+
input_ids: Optional[torch.LongTensor] = None,
|
885 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
886 |
+
cache_params: Optional[MambaCache] = None,
|
887 |
+
labels: Optional[torch.LongTensor] = None,
|
888 |
+
output_hidden_states: Optional[bool] = None,
|
889 |
+
return_dict: Optional[bool] = None,
|
890 |
+
use_cache: Optional[bool] = None,
|
891 |
+
**kwargs,
|
892 |
+
) -> Union[MambaSequenceClassifierOutput, Tuple[torch.FloatTensor]]:
|
893 |
+
r"""
|
894 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
895 |
+
Labels for computing the sequence classification/regression loss.
|
896 |
+
Indices should be in `[0, ..., config.num_labels - 1]`.
|
897 |
+
If `config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
898 |
+
If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
899 |
+
"""
|
900 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
901 |
+
|
902 |
+
mamba_outputs = self.backbone(
|
903 |
+
input_ids,
|
904 |
+
cache_params=cache_params,
|
905 |
+
inputs_embeds=inputs_embeds,
|
906 |
+
output_hidden_states=output_hidden_states,
|
907 |
+
return_dict=return_dict,
|
908 |
+
use_cache=use_cache,
|
909 |
+
)
|
910 |
+
|
911 |
+
last_hidden_states = mamba_outputs[0]
|
912 |
+
|
913 |
+
if input_ids is not None:
|
914 |
+
batch_size, _ = input_ids.shape[:2]
|
915 |
+
else:
|
916 |
+
batch_size, _ = inputs_embeds.shape[:2]
|
917 |
+
|
918 |
+
if self.config.pad_token_id is None and batch_size > 1:
|
919 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
920 |
+
|
921 |
+
if self.config.pad_token_id is None:
|
922 |
+
sequence_lengths = -1
|
923 |
+
else:
|
924 |
+
if input_ids is not None:
|
925 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
926 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
927 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
928 |
+
sequence_lengths = sequence_lengths.to(last_hidden_states.device)
|
929 |
+
else:
|
930 |
+
sequence_lengths = -1
|
931 |
+
logger.warning(
|
932 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
933 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
934 |
+
)
|
935 |
+
|
936 |
+
pooled_last_hidden_states = last_hidden_states[
|
937 |
+
torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths
|
938 |
+
]
|
939 |
+
pooled_logits = self.classifier(pooled_last_hidden_states)
|
940 |
+
|
941 |
+
loss = None
|
942 |
+
if labels is not None:
|
943 |
+
if self.config.problem_type is None:
|
944 |
+
if self.num_labels == 1:
|
945 |
+
self.config.problem_type = "regression"
|
946 |
+
elif self.num_labels > 1 and (labels.dtype in [torch.long, torch.int]):
|
947 |
+
self.config.problem_type = "single_label_classification"
|
948 |
+
else:
|
949 |
+
self.config.problem_type = "multi_label_classification"
|
950 |
+
|
951 |
+
if self.config.problem_type == "regression":
|
952 |
+
loss_fct = MSELoss()
|
953 |
+
if self.num_labels == 1:
|
954 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
955 |
+
else:
|
956 |
+
loss = loss_fct(pooled_logits, labels)
|
957 |
+
elif self.config.problem_type == "single_label_classification":
|
958 |
+
loss_fct = CrossEntropyLoss()
|
959 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
960 |
+
elif self.config.problem_type == "multi_label_classification":
|
961 |
+
loss_fct = BCEWithLogitsLoss()
|
962 |
+
loss = loss_fct(pooled_logits, labels)
|
963 |
+
|
964 |
+
if not return_dict:
|
965 |
+
output = (pooled_logits,) + mamba_outputs[1:]
|
966 |
+
return ((loss,) + output) if loss is not None else output
|
967 |
+
|
968 |
+
return MambaSequenceClassifierOutput(
|
969 |
+
loss=loss,
|
970 |
+
logits=pooled_logits,
|
971 |
+
cache_params=mamba_outputs.cache_params,
|
972 |
+
hidden_states=mamba_outputs.hidden_states,
|
973 |
+
)
|