lgq12697 commited on
Commit
dd49a86
1 Parent(s): cd1867f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -3
README.md CHANGED
@@ -1,11 +1,18 @@
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  widget:
4
- - text: AAAACATAATAATTTGCCGACTTACTCACCCTGTGATTAATCTATTTTCACTGTGTAGTAAGTAGAGAGTGTTACTTACTACAGTATCTATTTTTGTTTGGATGTTTGCCGTGGACAAGTGCTAACTGTCAAAACCCGTTTTGACCTTAAACCCAGCAATAATAATAATGTAAAACTCCATTGGGCAGTGCAACCTACTCCTCACATATTATATTATAATTCCTAAACCTTGATCAGTTAAATTAATAGCTCTGTTCCCTGTGGCTTTATATAAACACCATGGTTGTCAGCAGTTCAGCA
 
5
  tags:
6
  - DNA
7
  - biology
8
  - genomics
 
 
 
 
 
 
9
  ---
10
  # Plant foundation DNA large language models
11
 
@@ -37,7 +44,7 @@ Here is a simple code for inference:
37
  ```python
38
  from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
39
 
40
- model_name = 'plant-dnagemma-promoter'
41
  # load model and tokenizer
42
  model = AutoModelForSequenceClassification.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
43
  tokenizer = AutoTokenizer.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
@@ -59,4 +66,4 @@ Detailed training procedure can be found in our manuscript.
59
 
60
 
61
  #### Hardware
62
- Model was trained on a NVIDIA GTX1080Ti GPU (11 GB).
 
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  widget:
4
+ - text: >-
5
+ AAAACATAATAATTTGCCGACTTACTCACCCTGTGATTAATCTATTTTCACTGTGTAGTAAGTAGAGAGTGTTACTTACTACAGTATCTATTTTTGTTTGGATGTTTGCCGTGGACAAGTGCTAACTGTCAAAACCCGTTTTGACCTTAAACCCAGCAATAATAATAATGTAAAACTCCATTGGGCAGTGCAACCTACTCCTCACATATTATATTATAATTCCTAAACCTTGATCAGTTAAATTAATAGCTCTGTTCCCTGTGGCTTTATATAAACACCATGGTTGTCAGCAGTTCAGCA
6
  tags:
7
  - DNA
8
  - biology
9
  - genomics
10
+ datasets:
11
+ - zhangtaolab/plant-multi-species-core-promoters
12
+ metrics:
13
+ - accuracy
14
+ base_model:
15
+ - zhangtaolab/plant-dnagemma-BPE
16
  ---
17
  # Plant foundation DNA large language models
18
 
 
44
  ```python
45
  from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
46
 
47
+ model_name = 'plant-dnagemma-BPE-promoter'
48
  # load model and tokenizer
49
  model = AutoModelForSequenceClassification.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
50
  tokenizer = AutoTokenizer.from_pretrained(f'zhangtaolab/{model_name}', trust_remote_code=True)
 
66
 
67
 
68
  #### Hardware
69
+ Model was trained on a NVIDIA GTX1080Ti GPU (11 GB).