File size: 1,493 Bytes
bd5c9b8
 
7c5e6dc
ff42297
7c5e6dc
 
bd5c9b8
 
 
7c5e6dc
 
 
 
bd5c9b8
 
7c5e6dc
 
bd5c9b8
7c5e6dc
bd5c9b8
ff42297
25df31d
 
bd5c9b8
7c5e6dc
bd5c9b8
7c5e6dc
bd5c9b8
7c5e6dc
bd5c9b8
7c5e6dc
bd5c9b8
7c5e6dc
bd5c9b8
7c5e6dc
bd5c9b8
7c5e6dc
 
 
bd5c9b8
7c5e6dc
 
 
 
 
 
 
 
 
 
 
 
 
 
bd5c9b8
7c5e6dc
bd5c9b8
ff42297
 
 
bd5c9b8
 
7c5e6dc
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: facebook/opt-350m
datasets:
- generator
library_name: peft
license: other
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: opt350
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# opt350

This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7869

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8289        | 0.9999 | 8068 | 1.7869          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.45.0
- Pytorch 2.1.2
- Datasets 3.1.0
- Tokenizers 0.20.2