File size: 1,396 Bytes
bd5c9b8 7c5e6dc 25df31d 7c5e6dc bd5c9b8 25df31d bd5c9b8 7c5e6dc bd5c9b8 7c5e6dc bd5c9b8 7c5e6dc bd5c9b8 25df31d bd5c9b8 7c5e6dc bd5c9b8 7c5e6dc bd5c9b8 7c5e6dc bd5c9b8 7c5e6dc bd5c9b8 7c5e6dc bd5c9b8 7c5e6dc bd5c9b8 7c5e6dc bd5c9b8 7c5e6dc bd5c9b8 7c5e6dc bd5c9b8 7c5e6dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
base_model: facebook/opt-350m
datasets:
- HuggingFaceH4/ultrachat_200k
library_name: peft
license: other
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: opt350
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt350
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the HuggingFaceH4/ultrachat_200k dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7869
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.45.0
- Pytorch 2.1.2
- Datasets 3.1.0
- Tokenizers 0.20.2 |