Upload 9 files
Browse files- AutoModel.pth +3 -0
- config.json +28 -0
- main.py +0 -0
- model.py +212 -0
- requirements.txt +4 -0
- run_local.py +63 -0
- sky.py +71 -0
- tokenizer.json +0 -0
- vocab.txt +0 -0
AutoModel.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3045413c560025a975f3a5d5ec93adb33adaaabf67603379a8e0c096d94b998
|
3 |
+
size 3237240570
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_name": "AutoModel",
|
3 |
+
"hidden_size": 768,
|
4 |
+
"num_attention_heads": 12,
|
5 |
+
"num_hidden_layers": 12,
|
6 |
+
"intermediate_size": 3072,
|
7 |
+
"hidden_dropout_prob": 0.1,
|
8 |
+
"attention_probs_dropout_prob": 0.1,
|
9 |
+
"image_size": 224,
|
10 |
+
"image_channels": 3,
|
11 |
+
"patch_size": 16,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"vocab_size": 30522,
|
14 |
+
"type_vocab_size": 2,
|
15 |
+
"audio_sample_rate": 16000,
|
16 |
+
"audio_frame_size": 1024,
|
17 |
+
"audio_hop_size": 512,
|
18 |
+
"enable_vqa": true,
|
19 |
+
"enable_caption": true,
|
20 |
+
"enable_retrieval": true,
|
21 |
+
"enable_asr": true,
|
22 |
+
"enable_realtime_asr": true,
|
23 |
+
"batch_size": 32,
|
24 |
+
"learning_rate": 0.0001,
|
25 |
+
"weight_decay": 0.01,
|
26 |
+
"warmup_steps": 10000,
|
27 |
+
"max_steps": 100000
|
28 |
+
}
|
main.py
ADDED
File without changes
|
model.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import os
|
5 |
+
# 配置类定义
|
6 |
+
class Config:
|
7 |
+
def __init__(self):
|
8 |
+
# 模型架构参数
|
9 |
+
self.hidden_size = 768
|
10 |
+
self.num_attention_heads = 12
|
11 |
+
self.num_hidden_layers = 12
|
12 |
+
self.intermediate_size = 3072
|
13 |
+
self.hidden_dropout_prob = 0.1
|
14 |
+
self.attention_probs_dropout_prob = 0.1
|
15 |
+
|
16 |
+
# 图像相关
|
17 |
+
self.image_size = 224
|
18 |
+
self.image_channels = 3
|
19 |
+
self.patch_size = 16
|
20 |
+
|
21 |
+
# 文本相关
|
22 |
+
self.max_position_embeddings = 512
|
23 |
+
self.vocab_size = 30522
|
24 |
+
self.type_vocab_size = 2
|
25 |
+
|
26 |
+
# 语音相关
|
27 |
+
self.audio_sample_rate = 16000
|
28 |
+
self.audio_frame_size = 1024
|
29 |
+
self.audio_hop_size = 512
|
30 |
+
|
31 |
+
# 任务相关
|
32 |
+
self.enable_vqa = True
|
33 |
+
self.enable_caption = True
|
34 |
+
self.enable_retrieval = True
|
35 |
+
self.enable_asr = True # 语音识别
|
36 |
+
self.enable_realtime_asr = True # 实时语音识别
|
37 |
+
|
38 |
+
# 训练相关
|
39 |
+
self.batch_size = 32
|
40 |
+
self.learning_rate = 1e-4
|
41 |
+
self.weight_decay = 0.01
|
42 |
+
self.warmup_steps = 10000
|
43 |
+
self.max_steps = 100000
|
44 |
+
|
45 |
+
# 模型相关类定义
|
46 |
+
class ImageEncoder(nn.Module):
|
47 |
+
def __init__(self, config):
|
48 |
+
super(ImageEncoder, self).__init__()
|
49 |
+
self.config = config
|
50 |
+
self.encoder_layer = nn.Sequential(
|
51 |
+
nn.Conv2d(3, 64, kernel_size=3),
|
52 |
+
nn.ReLU(),
|
53 |
+
nn.MaxPool2d(2, 2),
|
54 |
+
nn.Flatten(),
|
55 |
+
nn.Linear(64 * 111 * 111, config.hidden_size)
|
56 |
+
)
|
57 |
+
|
58 |
+
def forward(self, image):
|
59 |
+
image_features = self.encoder_layer(image)
|
60 |
+
return image_features
|
61 |
+
|
62 |
+
class TextEncoder(nn.Module):
|
63 |
+
def __init__(self, config):
|
64 |
+
super(TextEncoder, self).__init__()
|
65 |
+
self.config = config
|
66 |
+
self.transformer_layer = nn.TransformerEncoderLayer(
|
67 |
+
d_model=config.hidden_size,
|
68 |
+
nhead=config.num_attention_heads,
|
69 |
+
batch_first=True
|
70 |
+
)
|
71 |
+
self.transformer_encoder = nn.TransformerEncoder(
|
72 |
+
self.transformer_layer,
|
73 |
+
num_layers=config.num_hidden_layers
|
74 |
+
)
|
75 |
+
|
76 |
+
def forward(self, text):
|
77 |
+
text_features = self.transformer_encoder(text).mean(dim=1)
|
78 |
+
return text_features
|
79 |
+
|
80 |
+
class AudioEncoder(nn.Module):
|
81 |
+
def __init__(self, config):
|
82 |
+
super(AudioEncoder, self).__init__()
|
83 |
+
self.config = config
|
84 |
+
self.encoder_layer = nn.Sequential(
|
85 |
+
nn.Linear(config.audio_sample_rate, config.hidden_size),
|
86 |
+
nn.ReLU(),
|
87 |
+
nn.Linear(config.hidden_size, config.hidden_size)
|
88 |
+
)
|
89 |
+
|
90 |
+
def forward(self, audio):
|
91 |
+
audio_features = self.encoder_layer(audio)
|
92 |
+
return audio_features
|
93 |
+
|
94 |
+
class FusionLayer(nn.Module):
|
95 |
+
def __init__(self, config):
|
96 |
+
super(FusionLayer, self).__init__()
|
97 |
+
self.config = config
|
98 |
+
self.fusion_layer = nn.Linear(config.hidden_size * 3, config.hidden_size)
|
99 |
+
|
100 |
+
def forward(self, image_features, text_features, audio_features):
|
101 |
+
fused_features = torch.cat((image_features, text_features, audio_features), dim=1)
|
102 |
+
fused_features = self.fusion_layer(fused_features)
|
103 |
+
return fused_features
|
104 |
+
|
105 |
+
class VQALayer(nn.Module):
|
106 |
+
def __init__(self, config):
|
107 |
+
super(VQALayer, self).__init__()
|
108 |
+
self.config = config
|
109 |
+
self.vqa_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
110 |
+
|
111 |
+
def forward(self, fused_features):
|
112 |
+
vqa_output = self.vqa_layer(fused_features)
|
113 |
+
return vqa_output
|
114 |
+
|
115 |
+
class CaptionLayer(nn.Module):
|
116 |
+
def __init__(self, config):
|
117 |
+
super(CaptionLayer, self).__init__()
|
118 |
+
self.config = config
|
119 |
+
self.caption_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
120 |
+
|
121 |
+
def forward(self, fused_features):
|
122 |
+
caption_output = self.caption_layer(fused_features)
|
123 |
+
return caption_output
|
124 |
+
|
125 |
+
class RetrievalLayer(nn.Module):
|
126 |
+
def __init__(self, config):
|
127 |
+
super(RetrievalLayer, self).__init__()
|
128 |
+
self.config = config
|
129 |
+
self.retrieval_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
130 |
+
|
131 |
+
def forward(self, fused_features):
|
132 |
+
retrieval_output = self.retrieval_layer(fused_features)
|
133 |
+
return retrieval_output
|
134 |
+
|
135 |
+
class ASRLayer(nn.Module):
|
136 |
+
def __init__(self, config):
|
137 |
+
super(ASRLayer, self).__init__()
|
138 |
+
self.config = config
|
139 |
+
self.asr_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
140 |
+
|
141 |
+
def forward(self, fused_features):
|
142 |
+
asr_output = self.asr_layer(fused_features)
|
143 |
+
return asr_output
|
144 |
+
|
145 |
+
class RealtimeASRLayer(nn.Module):
|
146 |
+
def __init__(self, config):
|
147 |
+
super(RealtimeASRLayer, self).__init__()
|
148 |
+
self.config = config
|
149 |
+
self.realtime_asr_layer = nn.Linear(config.hidden_size, config.vocab_size)
|
150 |
+
|
151 |
+
def forward(self, fused_features):
|
152 |
+
realtime_asr_output = self.realtime_asr_layer(fused_features)
|
153 |
+
return realtime_asr_output
|
154 |
+
|
155 |
+
# 主模型定义
|
156 |
+
class AutoModel(nn.Module):
|
157 |
+
def __init__(self, config):
|
158 |
+
super(AutoModel, self).__init__()
|
159 |
+
self.config = config
|
160 |
+
self.image_encoder = ImageEncoder(config)
|
161 |
+
self.text_encoder = TextEncoder(config)
|
162 |
+
self.audio_encoder = AudioEncoder(config)
|
163 |
+
self.fusion_layer = FusionLayer(config)
|
164 |
+
self.vqa_layer = VQALayer(config)
|
165 |
+
self.caption_layer = CaptionLayer(config)
|
166 |
+
self.retrieval_layer = RetrievalLayer(config)
|
167 |
+
self.asr_layer = ASRLayer(config)
|
168 |
+
self.realtime_asr_layer = RealtimeASRLayer(config)
|
169 |
+
|
170 |
+
def forward(self, image, text, audio):
|
171 |
+
image_features = self.image_encoder(image)
|
172 |
+
text_features = self.text_encoder(text)
|
173 |
+
audio_features = self.audio_encoder(audio)
|
174 |
+
fused_features = self.fusion_layer(image_features, text_features, audio_features)
|
175 |
+
vqa_output = self.vqa_layer(fused_features)
|
176 |
+
caption_output = self.caption_layer(fused_features)
|
177 |
+
retrieval_output = self.retrieval_layer(fused_features)
|
178 |
+
asr_output = self.asr_layer(fused_features)
|
179 |
+
realtime_asr_output = self.realtime_asr_layer(fused_features)
|
180 |
+
return vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output
|
181 |
+
|
182 |
+
# 测试代码
|
183 |
+
config = Config()
|
184 |
+
model = AutoModel(config)
|
185 |
+
image = torch.randn(1, 3, 224, 224)
|
186 |
+
text = torch.randn(1, config.max_position_embeddings, config.hidden_size)
|
187 |
+
audio = torch.randn(1, config.audio_sample_rate)
|
188 |
+
vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output = model(image, text, audio)
|
189 |
+
|
190 |
+
# 输出结果
|
191 |
+
print("VQA output shape:", vqa_output.shape)
|
192 |
+
print("Caption output shape:", caption_output.shape)
|
193 |
+
print("Retrieval output shape:", retrieval_output.shape)
|
194 |
+
print("ASR output shape:", asr_output.shape)
|
195 |
+
print("Realtime ASR output shape:", realtime_asr_output.shape)
|
196 |
+
|
197 |
+
# 打印总参数数量
|
198 |
+
total_params = sum(p.numel() for p in model.parameters())
|
199 |
+
print(f"\n总参数数量: {total_params}")
|
200 |
+
|
201 |
+
# 定义保存路径
|
202 |
+
save_dir = "./" # 当前目录
|
203 |
+
os.makedirs(save_dir, exist_ok=True)
|
204 |
+
save_path = os.path.join(save_dir, "AutoModel.pth")
|
205 |
+
|
206 |
+
# 保存模型权重
|
207 |
+
torch.save(model.state_dict(), save_path)
|
208 |
+
print(f"模型权重已保存到: {save_path}")
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.9.0
|
2 |
+
transformers>=4.10.0
|
3 |
+
numpy>=1.21.0
|
4 |
+
gradio>=3.0.0
|
run_local.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from model import AutoModel, Config
|
4 |
+
|
5 |
+
def load_model(model_path, config_path):
|
6 |
+
"""
|
7 |
+
加载模型权重和配置
|
8 |
+
"""
|
9 |
+
# 加载配置
|
10 |
+
if not os.path.exists(config_path):
|
11 |
+
raise FileNotFoundError(f"配置文件未找到: {config_path}")
|
12 |
+
print(f"加载配置文件: {config_path}")
|
13 |
+
config = Config()
|
14 |
+
|
15 |
+
# 初始化模型
|
16 |
+
model = AutoModel(config)
|
17 |
+
|
18 |
+
# 加载权重
|
19 |
+
if not os.path.exists(model_path):
|
20 |
+
raise FileNotFoundError(f"模型文件未找到: {model_path}")
|
21 |
+
print(f"加载模型权重: {model_path}")
|
22 |
+
state_dict = torch.load(model_path, map_location=torch.device("cpu"))
|
23 |
+
model.load_state_dict(state_dict)
|
24 |
+
model.eval()
|
25 |
+
print("模型加载成功并设置为评估模式。")
|
26 |
+
|
27 |
+
return model, config
|
28 |
+
|
29 |
+
|
30 |
+
def run_inference(model, config):
|
31 |
+
"""
|
32 |
+
使用模型运行推理
|
33 |
+
"""
|
34 |
+
# 模拟示例输入
|
35 |
+
image = torch.randn(1, 3, 224, 224) # 图像输入
|
36 |
+
text = torch.randn(1, config.max_position_embeddings, config.hidden_size) # 文本输入
|
37 |
+
audio = torch.randn(1, config.audio_sample_rate) # 音频输入
|
38 |
+
|
39 |
+
# 模型推理
|
40 |
+
outputs = model(image, text, audio)
|
41 |
+
vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output = outputs
|
42 |
+
|
43 |
+
# 打印结果
|
44 |
+
print("\n推理结果:")
|
45 |
+
print(f"VQA output shape: {vqa_output.shape}")
|
46 |
+
print(f"Caption output shape: {caption_output.shape}")
|
47 |
+
print(f"Retrieval output shape: {retrieval_output.shape}")
|
48 |
+
print(f"ASR output shape: {asr_output.shape}")
|
49 |
+
print(f"Realtime ASR output shape: {realtime_asr_output.shape}")
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
# 文件路径
|
53 |
+
model_path = "AutoModel.pth"
|
54 |
+
config_path = "config.json"
|
55 |
+
|
56 |
+
# 加载模型
|
57 |
+
try:
|
58 |
+
model, config = load_model(model_path, config_path)
|
59 |
+
|
60 |
+
# 运行推理
|
61 |
+
run_inference(model, config)
|
62 |
+
except Exception as e:
|
63 |
+
print(f"运行失败: {e}")
|
sky.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
# 定义配置参数
|
5 |
+
config_data = {
|
6 |
+
"hidden_size": 768,
|
7 |
+
"num_attention_heads": 12,
|
8 |
+
"num_hidden_layers": 12,
|
9 |
+
"intermediate_size": 3072,
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"attention_probs_dropout_prob": 0.1,
|
12 |
+
"image_size": 224,
|
13 |
+
"image_channels": 3,
|
14 |
+
"patch_size": 16,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"vocab_size": 30522,
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"audio_sample_rate": 16000,
|
19 |
+
"audio_frame_size": 1024,
|
20 |
+
"audio_hop_size": 512,
|
21 |
+
"enable_vqa": True,
|
22 |
+
"enable_caption": True,
|
23 |
+
"enable_retrieval": True,
|
24 |
+
"enable_asr": True,
|
25 |
+
"enable_realtime_asr": True,
|
26 |
+
"batch_size": 32,
|
27 |
+
"learning_rate": 0.0001,
|
28 |
+
"weight_decay": 0.01,
|
29 |
+
"warmup_steps": 10000,
|
30 |
+
"max_steps": 100000
|
31 |
+
}
|
32 |
+
|
33 |
+
# 文件路径
|
34 |
+
config_path = r"C:\Users\baby7\Desktop\zero_sg-pytorch-zero-v4\config.json"
|
35 |
+
|
36 |
+
# 保存配置文件
|
37 |
+
os.makedirs(os.path.dirname(config_path), exist_ok=True)
|
38 |
+
with open(config_path, "w") as f:
|
39 |
+
json.dump(config_data, f, indent=4)
|
40 |
+
|
41 |
+
print(f"配置文件已保存到: {config_path}")
|
42 |
+
|
43 |
+
from transformers import BertTokenizer
|
44 |
+
import os
|
45 |
+
|
46 |
+
# 初始化分词器
|
47 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
48 |
+
|
49 |
+
# 保存分词器到目标路径
|
50 |
+
tokenizer_path = r"C:\Users\baby7\Desktop\zero_sg-pytorch-zero-v4\tokenizer"
|
51 |
+
os.makedirs(tokenizer_path, exist_ok=True)
|
52 |
+
tokenizer.save_pretrained(tokenizer_path)
|
53 |
+
|
54 |
+
print(f"分词器已保存到: {tokenizer_path}")
|
55 |
+
|
56 |
+
|
57 |
+
#### **加载配置文件**
|
58 |
+
from model import Config # 假设您有Config类
|
59 |
+
|
60 |
+
config_file = r"C:\Users\baby7\Desktop\zero_sg-pytorch-zero-v4\config.json"
|
61 |
+
config = Config(config_file)
|
62 |
+
print("加载的配置: ", config.__dict__)
|
63 |
+
|
64 |
+
from transformers import BertTokenizer
|
65 |
+
|
66 |
+
tokenizer_path = r"C:\Users\baby7\Desktop\zero_sg-pytorch-zero-v4\tokenizer"
|
67 |
+
tokenizer = BertTokenizer.from_pretrained(tokenizer_path)
|
68 |
+
text = "Hello, how are you?"
|
69 |
+
encoded_input = tokenizer(text, return_tensors="pt", max_length=512, padding="max_length", truncation=True)
|
70 |
+
|
71 |
+
print("分词器输出: ", encoded_input["input_ids"].shape)
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|