File size: 7,644 Bytes
2df5d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
# 配置类定义
class Config:
    def __init__(self):
        # 模型架构参数
        self.hidden_size = 768
        self.num_attention_heads = 12
        self.num_hidden_layers = 12
        self.intermediate_size = 3072
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1

        # 图像相关
        self.image_size = 224
        self.image_channels = 3
        self.patch_size = 16

        # 文本相关
        self.max_position_embeddings = 512
        self.vocab_size = 30522
        self.type_vocab_size = 2

        # 语音相关
        self.audio_sample_rate = 16000
        self.audio_frame_size = 1024
        self.audio_hop_size = 512

        # 任务相关
        self.enable_vqa = True
        self.enable_caption = True
        self.enable_retrieval = True
        self.enable_asr = True  # 语音识别
        self.enable_realtime_asr = True  # 实时语音识别

        # 训练相关
        self.batch_size = 32
        self.learning_rate = 1e-4
        self.weight_decay = 0.01
        self.warmup_steps = 10000
        self.max_steps = 100000

# 模型相关类定义
class ImageEncoder(nn.Module):
    def __init__(self, config):
        super(ImageEncoder, self).__init__()
        self.config = config
        self.encoder_layer = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Flatten(),
            nn.Linear(64 * 111 * 111, config.hidden_size)
        )

    def forward(self, image):
        image_features = self.encoder_layer(image)
        return image_features

class TextEncoder(nn.Module):
    def __init__(self, config):
        super(TextEncoder, self).__init__()
        self.config = config
        self.transformer_layer = nn.TransformerEncoderLayer(
            d_model=config.hidden_size, 
            nhead=config.num_attention_heads,
            batch_first=True
        )
        self.transformer_encoder = nn.TransformerEncoder(
            self.transformer_layer, 
            num_layers=config.num_hidden_layers
        )

    def forward(self, text):
        text_features = self.transformer_encoder(text).mean(dim=1)
        return text_features

class AudioEncoder(nn.Module):
    def __init__(self, config):
        super(AudioEncoder, self).__init__()
        self.config = config
        self.encoder_layer = nn.Sequential(
            nn.Linear(config.audio_sample_rate, config.hidden_size),
            nn.ReLU(),
            nn.Linear(config.hidden_size, config.hidden_size)
        )

    def forward(self, audio):
        audio_features = self.encoder_layer(audio)
        return audio_features

class FusionLayer(nn.Module):
    def __init__(self, config):
        super(FusionLayer, self).__init__()
        self.config = config
        self.fusion_layer = nn.Linear(config.hidden_size * 3, config.hidden_size)

    def forward(self, image_features, text_features, audio_features):
        fused_features = torch.cat((image_features, text_features, audio_features), dim=1)
        fused_features = self.fusion_layer(fused_features)
        return fused_features

class VQALayer(nn.Module):
    def __init__(self, config):
        super(VQALayer, self).__init__()
        self.config = config
        self.vqa_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        vqa_output = self.vqa_layer(fused_features)
        return vqa_output

class CaptionLayer(nn.Module):
    def __init__(self, config):
        super(CaptionLayer, self).__init__()
        self.config = config
        self.caption_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        caption_output = self.caption_layer(fused_features)
        return caption_output

class RetrievalLayer(nn.Module):
    def __init__(self, config):
        super(RetrievalLayer, self).__init__()
        self.config = config
        self.retrieval_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        retrieval_output = self.retrieval_layer(fused_features)
        return retrieval_output

class ASRLayer(nn.Module):
    def __init__(self, config):
        super(ASRLayer, self).__init__()
        self.config = config
        self.asr_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        asr_output = self.asr_layer(fused_features)
        return asr_output

class RealtimeASRLayer(nn.Module):
    def __init__(self, config):
        super(RealtimeASRLayer, self).__init__()
        self.config = config
        self.realtime_asr_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        realtime_asr_output = self.realtime_asr_layer(fused_features)
        return realtime_asr_output

class TextOutputLayer(nn.Module):
    def __init__(self, config):
        super(TextOutputLayer, self).__init__()
        self.config = config
        self.text_output_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        text_output = self.text_output_layer(fused_features)
        return text_output

# 主模型定义
class AutoModel(nn.Module):
    def __init__(self, config):
        super(AutoModel, self).__init__()
        self.config = config
        self.image_encoder = ImageEncoder(config)
        self.text_encoder = TextEncoder(config)
        self.audio_encoder = AudioEncoder(config)
        self.fusion_layer = FusionLayer(config)
        self.vqa_layer = VQALayer(config)
        self.caption_layer = CaptionLayer(config)
        self.retrieval_layer = RetrievalLayer(config)
        self.asr_layer = ASRLayer(config)
        self.realtime_asr_layer = RealtimeASRLayer(config)
        self.text_output_layer = TextOutputLayer(config)

    def forward(self, image, text, audio):
        image_features = self.image_encoder(image)
        text_features = self.text_encoder(text)
        audio_features = self.audio_encoder(audio)
        fused_features = self.fusion_layer(image_features, text_features, audio_features)
        vqa_output = self.vqa_layer(fused_features)
        caption_output = self.caption_layer(fused_features)
        retrieval_output = self.retrieval_layer(fused_features)
        asr_output = self.asr_layer(fused_features)
        realtime_asr_output = self.realtime_asr_layer(fused_features)
        text_output = self.text_output_layer(fused_features)
        return vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output, text_output

# 测试代码
config = Config()
model = AutoModel(config)
image = torch.randn(1, 3, 224, 224)
text = torch.randn(1, config.max_position_embeddings, config.hidden_size)
audio = torch.randn(1, config.audio_sample_rate)
vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output, text_output = model(image, text, audio)

# 输出结果
print("VQA output shape:", vqa_output.shape)
print("Caption output shape:", caption_output.shape)
print("Retrieval output shape:", retrieval_output.shape)
print("ASR output shape:", asr_output.shape)
print("Realtime ASR output shape:", realtime_asr_output.shape)
print("Text output shape:", text_output.shape)

# 打印总参数数量
total_params = sum(p.numel() for p in model.parameters())
print(f"\n总参数数量: {total_params}")



# 保存模型权重
save_path = "save.pth"
torch.save(model.state_dict(), save_path)
print(f"模型权重已保存到: {save_path}")