SHMT / test2.py
zeroMN's picture
Upload 4 files
7120259 verified
raw
history blame
2.1 kB
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
import matplotlib.pyplot as plt
import seaborn as sns
# 数据集 URL
data_url = 'https://archive.ics.uci.edu/static/public/17/data.csv'
# 加载数据集
df = pd.read_csv(data_url)
# 查看数据集的前几行
print("数据集的前几行:")
print(df.head())
# 数据预处理
# 编码目标变量(将 M 和 B 转换为 1 和 0)
df['Diagnosis'] = df['Diagnosis'].map({'M': 1, 'B': 0})
# 特征和目标
X = df.drop(columns=['ID', 'Diagnosis']) # 特征
y = df['Diagnosis'] # 目标
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 输出分类报告
print("\n分类报告:")
print(classification_report(y_test, y_pred))
# 可视化特征重要性
feature_importances = model.feature_importances_
features = X.columns
indices = range(len(features))
# 创建条形图
plt.figure(figsize=(12, 6))
sns.barplot(x=feature_importances, y=features)
plt.title('特征重要性')
plt.xlabel('重要性')
plt.ylabel('特征')
plt.show()
####################################################################
from ucimlrepo import fetch_ucirepo
# fetch dataset
breast_cancer_wisconsin_diagnostic = fetch_ucirepo(id=17)
# data (as pandas dataframes)
X = breast_cancer_wisconsin_diagnostic.data.features
y = breast_cancer_wisconsin_diagnostic.data.targets
# metadata
print(breast_cancer_wisconsin_diagnostic.metadata)
# variable information
print(breast_cancer_wisconsin_diagnostic.variables)
##################################################################
# 0 0.96 0.99 0.97 71
# 1 0.98 0.93 0.95 43
#accuracy 0.96 114