|
import os
|
|
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
import random
|
|
from transformers import (
|
|
BartForConditionalGeneration,
|
|
AutoModelForCausalLM,
|
|
BertModel,
|
|
Wav2Vec2Model,
|
|
CLIPModel,
|
|
AutoTokenizer
|
|
)
|
|
|
|
class MultiModalModel(nn.Module):
|
|
def __init__(self):
|
|
super(MultiModalModel, self).__init__()
|
|
|
|
self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
|
|
self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
|
|
self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
|
|
self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
|
|
self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
|
|
|
|
|
|
self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
|
|
self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
|
self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
|
self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
|
|
self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
|
|
|
|
def forward(self, task, inputs):
|
|
if task == 'text_generation':
|
|
|
|
attention_mask = inputs.get('attention_mask')
|
|
print("输入数据:", inputs)
|
|
outputs = self.text_generator.generate(
|
|
inputs['input_ids'],
|
|
max_new_tokens=100,
|
|
pad_token_id=self.text_tokenizer.eos_token_id,
|
|
attention_mask=attention_mask,
|
|
top_p=0.9,
|
|
top_k=50,
|
|
temperature=0.8,
|
|
do_sample=True
|
|
)
|
|
print("生成的输出:", outputs)
|
|
return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
model = MultiModalModel()
|
|
|
|
|
|
task = "text_generation"
|
|
input_text = "This is a sample input."
|
|
tokenizer = model.text_tokenizer
|
|
inputs = tokenizer(input_text, return_tensors='pt')
|
|
|
|
|
|
inputs['attention_mask'] = torch.ones_like(inputs['input_ids'])
|
|
|
|
|
|
result = model(task, inputs)
|
|
print("最终输出结果:", result)
|
|
|