|
import os
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from transformers import (
|
|
BartForConditionalGeneration,
|
|
AutoModelForCausalLM,
|
|
BertModel,
|
|
Wav2Vec2Model,
|
|
CLIPModel,
|
|
AutoTokenizer
|
|
)
|
|
import numpy as np
|
|
import random
|
|
import copy
|
|
|
|
class MultiModalModel(nn.Module):
|
|
def __init__(self):
|
|
super(MultiModalModel, self).__init__()
|
|
|
|
self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
|
|
self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
|
|
self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
|
|
self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
|
|
self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
|
|
|
|
|
|
self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
|
|
self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
|
self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
|
self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
|
|
self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
|
|
|
|
def forward(self, task, inputs):
|
|
if task == 'text_generation':
|
|
attention_mask = inputs.attention_mask
|
|
outputs = self.text_generator.generate(
|
|
inputs.input_ids,
|
|
max_new_tokens=50,
|
|
pad_token_id=self.text_tokenizer.eos_token_id,
|
|
attention_mask=attention_mask,
|
|
top_p=0.95,
|
|
top_k=50,
|
|
temperature=1.2,
|
|
do_sample=True
|
|
)
|
|
return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
elif task == 'code_generation':
|
|
attention_mask = inputs.attention_mask
|
|
outputs = self.code_generator.generate(
|
|
inputs.input_ids,
|
|
max_new_tokens=50,
|
|
pad_token_id=self.code_tokenizer.eos_token_id,
|
|
attention_mask=attention_mask,
|
|
top_p=0.95,
|
|
top_k=50,
|
|
temperature=1.2,
|
|
do_sample=True
|
|
)
|
|
return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
elif task == 'text_understanding':
|
|
outputs = self.nlp_encoder(**inputs)
|
|
return outputs.last_hidden_state
|
|
elif task == 'speech_recognition':
|
|
outputs = self.speech_encoder(**inputs).logits
|
|
predicted_ids = torch.argmax(outputs, dim=-1)
|
|
transcription = self.speech_processor.batch_decode(predicted_ids)[0]
|
|
return transcription
|
|
elif task == 'vision_understanding':
|
|
outputs = self.vision_encoder.get_image_features(**inputs)
|
|
return outputs
|
|
|
|
def save_model(self, save_directory):
|
|
os.makedirs(save_directory, exist_ok=True)
|
|
torch.save(self.state_dict(), os.path.join(save_directory, 'multi_modal_model_state_dict.pth'))
|
|
self.text_tokenizer.save_pretrained(os.path.join(save_directory, 'text_generator'))
|
|
self.code_tokenizer.save_pretrained(os.path.join(save_directory, 'code_generator'))
|
|
self.nlp_tokenizer.save_pretrained(os.path.join(save_directory, 'nlp_encoder'))
|
|
self.speech_processor.save_pretrained(os.path.join(save_directory, 'speech_encoder'))
|
|
self.vision_processor.save_pretrained(os.path.join(save_directory, 'vision_encoder'))
|
|
|
|
def load_model(self, load_directory):
|
|
self.load_state_dict(torch.load(os.path.join(load_directory, 'multi_modal_model_state_dict.pth')))
|
|
self.text_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'text_generator'))
|
|
self.code_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'code_generator'))
|
|
self.nlp_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'nlp_encoder'))
|
|
self.speech_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'speech_encoder'))
|
|
self.vision_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'vision_encoder'))
|
|
|
|
class EvolutionaryMultiModalNetwork(nn.Module):
|
|
def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
|
super(EvolutionaryMultiModalNetwork, self).__init__()
|
|
self.device = device
|
|
self.multi_modal_model = MultiModalModel().to(self.device)
|
|
self.mutation_params = {
|
|
'mutation_rate': 0.2,
|
|
'mutation_scale': 0.05
|
|
}
|
|
|
|
def mutate_model(self, model):
|
|
"""
|
|
模型参数变异
|
|
"""
|
|
for param in model.parameters():
|
|
if param.requires_grad:
|
|
noise = torch.normal(
|
|
mean=torch.zeros_like(param.data),
|
|
std=self.mutation_params['mutation_scale']
|
|
).to(self.device)
|
|
if random.random() < self.mutation_params['mutation_rate']:
|
|
param.data.add_(noise)
|
|
return model
|
|
|
|
def evaluate_model(self, model, test_input):
|
|
"""
|
|
模型评估
|
|
"""
|
|
try:
|
|
with torch.no_grad():
|
|
output = model('text_generation', test_input)
|
|
complexity = sum(p.numel() for p in model.parameters())
|
|
performance = len(output)
|
|
return complexity, performance
|
|
except Exception as e:
|
|
print(f"模型评估错误: {e}")
|
|
return 0, 0
|
|
|
|
def save_models(self, save_dir='./model_checkpoints'):
|
|
"""
|
|
保存模型
|
|
"""
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
self.multi_modal_model.save_model(os.path.join(save_dir, 'multi_modal_model'))
|
|
print(f"模型已保存到 {save_dir}")
|
|
|
|
def evolutionary_training(self, epochs=5):
|
|
"""
|
|
进化训练
|
|
"""
|
|
print("🧬 开始进化训练...")
|
|
|
|
for epoch in range(epochs):
|
|
print(f"\n🌟 第 {epoch+1} 代:")
|
|
|
|
|
|
self.multi_modal_model = self.mutate_model(self.multi_modal_model)
|
|
|
|
|
|
test_input = self.multi_modal_model.text_tokenizer("Sample input for evaluation.", return_tensors='pt').to(self.device)
|
|
complexity, performance = self.evaluate_model(self.multi_modal_model, test_input)
|
|
print(f"多模态模型 - 复杂度: {complexity}, 性能: {performance:.4f}")
|
|
|
|
def main():
|
|
|
|
torch.manual_seed(42)
|
|
np.random.seed(42)
|
|
random.seed(42)
|
|
|
|
|
|
evo_network = EvolutionaryMultiModalNetwork()
|
|
|
|
|
|
evo_network.multi_modal_model.text_generator.config
|
|
|
|
|
|
evo_network.evolutionary_training(epochs=5)
|
|
|
|
|
|
evo_network.save_models()
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|