File size: 59,882 Bytes
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54a34b
87d67d4
7faa0e4
 
87d67d4
7faa0e4
87d67d4
 
7faa0e4
 
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
 
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
 
 
 
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
 
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
1782369
7faa0e4
1782369
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
1782369
 
7faa0e4
1782369
87d67d4
7faa0e4
87d67d4
 
7faa0e4
c54a34b
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
 
 
 
87d67d4
 
7faa0e4
 
 
 
 
87d67d4
 
7faa0e4
 
 
 
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
 
 
0cc97d4
7faa0e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
1782369
0cc97d4
1782369
 
7faa0e4
1782369
 
7faa0e4
1782369
 
7faa0e4
1782369
 
7faa0e4
1782369
 
7faa0e4
1782369
 
7faa0e4
1782369
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
0cc97d4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
 
 
 
 
 
 
 
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
c54a34b
 
540ab9d
 
c54a34b
 
 
540ab9d
 
c54a34b
 
 
 
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
 
 
 
 
540ab9d
 
c54a34b
540ab9d
 
c54a34b
 
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
87d67d4
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
540ab9d
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
 
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
 
c54a34b
 
540ab9d
 
c54a34b
 
540ab9d
 
c54a34b
 
 
 
 
540ab9d
 
c54a34b
 
 
 
540ab9d
 
c54a34b
 
540ab9d
 
c54a34b
 
540ab9d
 
c54a34b
 
540ab9d
 
c54a34b
 
540ab9d
 
c54a34b
 
540ab9d
 
c54a34b
 
87d67d4
 
c54a34b
87d67d4
 
c54a34b
 
87d67d4
 
c54a34b
 
 
 
87d67d4
 
c54a34b
 
 
 
 
 
 
540ab9d
 
c54a34b
540ab9d
 
c54a34b
540ab9d
87d67d4
c54a34b
87d67d4
 
c54a34b
540ab9d
 
c54a34b
540ab9d
87d67d4
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
 
 
87d67d4
 
7faa0e4
 
 
 
 
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
 
87d67d4
1782369
7faa0e4
 
 
87d67d4
 
7faa0e4
 
 
 
87d67d4
 
7faa0e4
 
 
 
 
cb42ac1
 
7faa0e4
 
 
 
 
 
 
 
cb42ac1
87d67d4
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
540ab9d
 
7faa0e4
540ab9d
 
7faa0e4
 
540ab9d
 
7faa0e4
540ab9d
 
7faa0e4
540ab9d
 
7faa0e4
540ab9d
 
7faa0e4
 
 
540ab9d
87d67d4
7faa0e4
87d67d4
 
7faa0e4
 
87d67d4
 
7faa0e4
 
87d67d4
 
7faa0e4
 
87d67d4
 
7faa0e4
 
87d67d4
 
7faa0e4
87d67d4
 
7faa0e4
540ab9d
87d67d4
7faa0e4
 
c54a34b
1782369
 
c54a34b
1782369
540ab9d
c54a34b
 
 
 
540ab9d
 
c54a34b
 
540ab9d
 
c54a34b
540ab9d
b0887ab
c54a34b
b0887ab
 
c54a34b
 
b0887ab
 
c54a34b
 
cb42ac1
 
c54a34b
 
cb42ac1
 
c54a34b
 
cb42ac1
 
c54a34b
 
 
cb42ac1
 
c54a34b
 
cb42ac1
 
c54a34b
cb42ac1
 
c54a34b
 
 
b0887ab
 
c54a34b
b0887ab
cb42ac1
c54a34b
 
7faa0e4
 
c54a34b
 
7faa0e4
 
c54a34b
7faa0e4
 
c54a34b
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
 
 
 
 
 
 
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
 
 
 
 
 
 
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
 
 
 
 
 
 
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
c54a34b
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7faa0e4
 
c54a34b
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54a34b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
 
 
 
1aace24
 
c54a34b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
 
 
 
c54a34b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
 
 
 
1782369
 
c54a34b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54a34b
87d67d4
c54a34b
 
 
 
87d67d4
c54a34b
 
 
 
 
87d67d4
 
 
c54a34b
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54a34b
 
 
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c54a34b
87d67d4
c54a34b
 
 
87d67d4
c54a34b
87d67d4
c54a34b
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
---
base_model: Snowflake/snowflake-arctic-embed-m
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1490
- loss:MatryoshkaLoss
- loss:TripletLoss
widget:
- source_sentence: Where is the global configuration directory located in ZenML's
    default setup?
  sentences:
  - '''default'' ...


    Creating default user ''default'' ...Creating default stack for user ''default''
    in workspace default...


    Active workspace not set. Setting it to the default.


    The active stack is not set. Setting the active stack to the default workspace
    stack.


    Using the default store for the global config.


    Unable to find ZenML repository in your current working directory (/tmp/folder)
    or any parent directories. If you want to use an existing repository which is
    in a different location, set the environment variable ''ZENML_REPOSITORY_PATH''.
    If you want to create a new repository, run zenml init.


    Running without an active repository root.


    Using the default local database.


    Running with active workspace: ''default'' (global)


    ┏━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━┯━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┓


    ┃ ACTIVE │ STACK NAME │ SHARED │ OWNER   │ ARTIFACT_STORE │ ORCHESTRATOR ┃


    ┠────────┼────────────┼────────┼─────────┼────────────────┼──────────────┨


    ┃   👉   │ default    │ ❌     │ default │ default        │ default      ┃


    ┗━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━┷━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┛


    The following is an example of the layout of the global config directory immediately
    after initialization:


    /home/stefan/.config/zenml   <- Global Config Directory


    ├── config.yaml              <- Global Configuration Settings


    └── local_stores             <- Every Stack component that stores information


    |                           locally will have its own subdirectory here.


    ├── a1a0d3d0-d552-4a80-be09-67e5e29be8ee   <- e.g. Local Store path for the


    |                                             `default` local Artifact Store


    └── default_zen_store


    └── zenml.db         <- SQLite database where ZenML data (stacks,


    components, etc) are stored by default.


    As shown above, the global config directory stores the following information:'
  - How do you configure the network settings on a Linux server?
  - 'Reranking for better retrieval


    Add reranking to your RAG inference for better retrieval performance.


    Rerankers are a crucial component of retrieval systems that use LLMs. They help
    improve the quality of the retrieved documents by reordering them based on additional
    features or scores. In this section, we''ll explore how to add a reranker to your
    RAG inference pipeline in ZenML.


    In previous sections, we set up the overall workflow, from data ingestion and
    preprocessing to embeddings generation and retrieval. We then set up some basic
    evaluation metrics to assess the performance of our retrieval system. A reranker
    is a way to squeeze a bit of extra performance out of the system by reordering
    the retrieved documents based on additional features or scores.


    As you can see, reranking is an optional addition we make to what we''ve already
    set up. It''s not strictly necessary, but it can help improve the relevance and
    quality of the retrieved documents, which in turn can lead to better responses
    from the LLM. Let''s dive in!


    PreviousEvaluation in practice


    NextUnderstanding reranking


    Last updated 1 month ago'
- source_sentence: Where can I find the instructions to enable CUDA for GPU-backed
    hardware in ZenML SDK Docs?
  sentences:
  - 'Migration guide 0.39.1 → 0.41.0


    How to migrate your ZenML pipelines and steps from version <=0.39.1 to 0.41.0.


    ZenML versions 0.40.0 to 0.41.0 introduced a new and more flexible syntax to define
    ZenML steps and pipelines. This page contains code samples that show you how to
    upgrade your steps and pipelines to the new syntax.


    Newer versions of ZenML still work with pipelines and steps defined using the
    old syntax, but the old syntax is deprecated and will be removed in the future.


    Overview


    from typing import Optional


    from zenml.steps import BaseParameters, Output, StepContext, step


    from zenml.pipelines import pipeline


    # Define a Step


    class MyStepParameters(BaseParameters):


    param_1: int


    param_2: Optional[float] = None


    @step


    def my_step(


    params: MyStepParameters, context: StepContext,


    ) -> Output(int_output=int, str_output=str):


    result = int(params.param_1 * (params.param_2 or 1))


    result_uri = context.get_output_artifact_uri()


    return result, result_uri


    # Run the Step separately


    my_step.entrypoint()


    # Define a Pipeline


    @pipeline


    def my_pipeline(my_step):


    my_step()


    step_instance = my_step(params=MyStepParameters(param_1=17))


    pipeline_instance = my_pipeline(my_step=step_instance)


    # Configure and run the Pipeline


    pipeline_instance.configure(enable_cache=False)


    schedule = Schedule(...)


    pipeline_instance.run(schedule=schedule)


    # Fetch the Pipeline Run


    last_run = pipeline_instance.get_runs()[0]


    int_output = last_run.get_step["my_step"].outputs["int_output"].read()


    from typing import Annotated, Optional, Tuple


    from zenml import get_step_context, pipeline, step


    from zenml.client import Client


    # Define a Step


    @step


    def my_step(


    param_1: int, param_2: Optional[float] = None


    ) -> Tuple[Annotated[int, "int_output"], Annotated[str, "str_output"]]:


    result = int(param_1 * (param_2 or 1))


    result_uri = get_step_context().get_output_artifact_uri()


    return result, result_uri


    # Run the Step separately


    my_step()


    # Define a Pipeline


    @pipeline'
  - How do I integrate Google Cloud VertexAI into my existing Kubernetes cluster?
  - ' SDK Docs .


    Enabling CUDA for GPU-backed hardwareNote that if you wish to use this step operator
    to run steps on a GPU, you will need to follow the instructions on this page to
    ensure that it works. It requires adding some extra settings customization and
    is essential to enable CUDA for the GPU to give its full acceleration.


    PreviousStep Operators


    NextGoogle Cloud VertexAI


    Last updated 19 days ago'
- source_sentence: What are the special metadata types supported by ZenML and how
    are they used?
  sentences:
  - 'Special Metadata Types


    Tracking your metadata.


    ZenML supports several special metadata types to capture specific kinds of information.
    Here are examples of how to use the special types Uri, Path, DType, and StorageSize:


    from zenml.metadata.metadata_types import StorageSize, DType


    from zenml import log_artifact_metadata


    log_artifact_metadata(


    metadata={


    "dataset_source": Uri("gs://my-bucket/datasets/source.csv"),


    "preprocessing_script": Path("/scripts/preprocess.py"),


    "column_types": {


    "age": DType("int"),


    "income": DType("float"),


    "score": DType("int")


    },


    "processed_data_size": StorageSize(2500000)


    In this example:


    Uri is used to indicate a dataset source URI.


    Path is used to specify the filesystem path to a preprocessing script.


    DType is used to describe the data types of specific columns.


    StorageSize is used to indicate the size of the processed data in bytes.


    These special types help standardize the format of metadata and ensure that it
    is logged in a consistent and interpretable manner.


    PreviousGroup metadata


    NextFetch metadata within steps


    Last updated 19 days ago'
  - 'Configure a code repository


    Connect a Git repository to ZenML to track code changes and collaborate on MLOps
    projects.


    Throughout the lifecycle of a MLOps pipeline, it can get quite tiresome to always
    wait for a Docker build every time after running a pipeline (even if the local
    Docker cache is used). However, there is a way to just have one pipeline build
    and keep reusing it until a change to the pipeline environment is made: by connecting
    a code repository.


    With ZenML, connecting to a Git repository optimizes the Docker build processes.
    It also has the added bonus of being a better way of managing repository changes
    and enabling better code collaboration. Here is how the flow changes when running
    a pipeline:


    You trigger a pipeline run on your local machine. ZenML parses the @pipeline function
    to determine the necessary steps.


    The local client requests stack information from the ZenML server, which responds
    with the cloud stack configuration.


    The local client detects that we''re using a code repository and requests the
    information from the git repo.


    Instead of building a new Docker image, the client checks if an existing image
    can be reused based on the current Git commit hash and other environment metadata.


    The client initiates a run in the orchestrator, which sets up the execution environment
    in the cloud, such as a VM.


    The orchestrator downloads the code directly from the Git repository and uses
    the existing Docker image to run the pipeline steps.


    Pipeline steps execute, storing artifacts in the cloud-based artifact store.


    Throughout the execution, the pipeline run status and metadata are reported back
    to the ZenML server.


    By connecting a Git repository, you avoid redundant builds and make your MLOps
    processes more efficient. Your team can work on the codebase simultaneously, with
    ZenML handling the version tracking and ensuring that the correct code version
    is always used for each run.


    Creating a GitHub Repository'
  - Can you explain the process of setting up a virtual environment in Python?
- source_sentence: What are the benefits of deploying stack components directly from
    the ZenML CLI?
  sentences:
  - '─────────────────────────────────────────────────┨┃ RESOURCE TYPES   │ 🔵 gcp-generic,
    📦 gcs-bucket, 🌀 kubernetes-cluster, 🐳 docker-registry ┃


    ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨


    ┃ RESOURCE NAME    │ <multiple>                                                               ┃


    ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨


    ┃ SECRET ID        │ 4694de65-997b-4929-8831-b49d5e067b97                                     ┃


    ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨


    ┃ SESSION DURATION │ N/A                                                                      ┃


    ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨


    ┃ EXPIRES IN       │ 59m46s                                                                   ┃


    ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨


    ┃ OWNER            │ default                                                                  ┃


    ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨


    ┃ WORKSPACE        │ default                                                                  ┃


    ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨


    ┃ SHARED           │ ➖                                                                       ┃


    ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨


    ┃ CREATED_AT       │ 2023-05-19 09:04:33.557126                                               ┃


    ┠──────────────────┼──────────────────────────────────────────────────────────────────────────┨


    ┃ UPDATED_AT       │ 2023-05-19 09:04:33.557127                                               ┃


    ┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛


    Configuration


    ┏━━━━━━━━━━━━┯━━━━━━━━━━━━┓'
  - How do you set up a custom service account for Vertex AI?
  - '⚒️Manage stacks


    Deploying your stack components directly from the ZenML CLI


    The first step in running your pipelines on remote infrastructure is to deploy
    all the components that you would need, like an MLflow tracking server, a Seldon
    Core model deployer, and more to your cloud.


    This can bring plenty of benefits like scalability, reliability, and collaboration.
    ZenML eases the path to production by providing a seamless way for all tools to
    interact with others through the use of abstractions. However, one of the most
    painful parts of this process, from what we see on our Slack and in general, is
    the deployment of these stack components.


    Deploying and managing MLOps tools is tricky 😭😵‍💫


    It is not trivial to set up all the different tools that you might need for your
    pipeline.


    🌈 Each tool comes with a certain set of requirements. For example, a Kubeflow
    installation will require you to have a Kubernetes cluster, and so would a Seldon
    Core deployment.


    🤔 Figuring out the defaults for infra parameters is not easy. Even if you have
    identified the backing infra that you need for a stack component, setting up reasonable
    defaults for parameters like instance size, CPU, memory, etc., needs a lot of
    experimentation to figure out.


    🚧 Many times, standard tool installations don''t work out of the box. For example,
    to run a custom pipeline in Vertex AI, it is not enough to just run an imported
    pipeline. You might also need a custom service account that is configured to perform
    tasks like reading secrets from your secret store or talking to other GCP services
    that your pipeline might need.


    🔐 Some tools need an additional layer of installations to enable a more secure,
    production-grade setup. For example, a standard MLflow tracking server deployment
    comes without an authentication frontend which might expose all of your tracking
    data to the world if deployed as-is.'
- source_sentence: What is the expiration time for the GCP OAuth2 token in the ZenML
    configuration?
  sentences:
  - '━━━━━┛


    Configuration


    ┏━━━━━━━━━━━━┯━━━━━━━━━━━━┓┃ PROPERTY   │ VALUE      ┃


    ┠────────────┼────────────┨


    ┃ project_id │ zenml-core ┃


    ┠────────────┼────────────┨


    ┃ token      │ [HIDDEN]   ┃


    ┗━━━━━━━━━━━━┷━━━━━━━━━━━━┛


    Note the temporary nature of the Service Connector. It will expire and become
    unusable in 1 hour:


    zenml service-connector list --name gcp-oauth2-token


    Example Command Output


    ┏━━━━━━━━┯━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┯━━━━━━━━┯━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━┓


    ┃ ACTIVE │ NAME             │ ID                                   │ TYPE   │
    RESOURCE TYPES        │ RESOURCE NAME │ SHARED │ OWNER   │ EXPIRES IN │ LABELS



    ┠────────┼──────────────────┼──────────────────────────────────────┼────────┼───────────────────────┼───────────────┼────────┼─────────┼────────────┼────────┨


    ┃        │ gcp-oauth2-token │ ec4d7d85-c71c-476b-aa76-95bf772c90da │ 🔵 gcp │ 🔵
    gcp-generic        │ <multiple>    │ ➖     │ default │ 59m35s     │        ┃


    ┃        │                  │                                      │        │
    📦 gcs-bucket         │               │        │         │            │        ┃


    ┃        │                  │                                      │        │
    🌀 kubernetes-cluster │               │        │         │            │        ┃


    ┃        │                  │                                      │        │
    🐳 docker-registry    │               │        │         │            │        ┃


    ┗━━━━━━━━┷━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━┷━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━┛


    Auto-configuration


    The GCP Service Connector allows auto-discovering and fetching credentials and
    configuration set up by the GCP CLI on your local host.'
  - 'Hugging Face


    Deploying models to Huggingface Inference Endpoints with Hugging Face :hugging_face:.


    Hugging Face Inference Endpoints provides a secure production solution to easily
    deploy any transformers, sentence-transformers, and diffusers models on a dedicated
    and autoscaling infrastructure managed by Hugging Face. An Inference Endpoint
    is built from a model from the Hub.


    This service provides dedicated and autoscaling infrastructure managed by Hugging
    Face, allowing you to deploy models without dealing with containers and GPUs.


    When to use it?


    You should use Hugging Face Model Deployer:


    if you want to deploy Transformers, Sentence-Transformers, or Diffusion models
    on dedicated and secure infrastructure.


    if you prefer a fully-managed production solution for inference without the need
    to handle containers and GPUs.


    if your goal is to turn your models into production-ready APIs with minimal infrastructure
    or MLOps involvement


    Cost-effectiveness is crucial, and you want to pay only for the raw compute resources
    you use.


    Enterprise security is a priority, and you need to deploy models into secure offline
    endpoints accessible only via a direct connection to your Virtual Private Cloud
    (VPCs).


    If you are looking for a more easy way to deploy your models locally, you can
    use the MLflow Model Deployer flavor.


    How to deploy it?


    The Hugging Face Model Deployer flavor is provided by the Hugging Face ZenML integration,
    so you need to install it on your local machine to be able to deploy your models.
    You can do this by running the following command:


    zenml integration install huggingface -y


    To register the Hugging Face model deployer with ZenML you need to run the following
    command:


    zenml model-deployer register <MODEL_DEPLOYER_NAME> --flavor=huggingface --token=<YOUR_HF_TOKEN>
    --namespace=<YOUR_HF_NAMESPACE>


    Here,


    token parameter is the Hugging Face authentication token. It can be managed through
    Hugging Face settings.'
  - Can you list the steps to set up a Docker registry on a Kubernetes cluster?
model-index:
- name: zenml/finetuned-snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 384
      type: dim_384
    metrics:
    - type: cosine_accuracy@1
      value: 0.29518072289156627
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5240963855421686
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5843373493975904
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6867469879518072
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.29518072289156627
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.17469879518072293
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11686746987951804
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0686746987951807
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.29518072289156627
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5240963855421686
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5843373493975904
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6867469879518072
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4908042072911187
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.42844234079173843
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.43576329240226386
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.25903614457831325
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5060240963855421
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5783132530120482
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6445783132530121
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.25903614457831325
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1686746987951807
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11566265060240961
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0644578313253012
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.25903614457831325
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5060240963855421
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5783132530120482
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6445783132530121
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4548319777111225
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.39346194301013593
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.40343211538391555
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.2710843373493976
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.46987951807228917
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5662650602409639
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6144578313253012
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2710843373493976
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1566265060240964
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11325301204819276
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.061445783132530116
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2710843373493976
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.46987951807228917
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5662650602409639
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6144578313253012
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.44433019669319024
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3893574297188756
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3989315479842741
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.21686746987951808
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.42168674698795183
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5180722891566265
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5843373493975904
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.21686746987951808
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.14056224899598396
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.10361445783132528
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05843373493975902
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.21686746987951808
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.42168674698795183
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5180722891566265
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5843373493975904
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.39639025659520544
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3364529546758464
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.34658882510541217
      name: Cosine Map@100
---

# zenml/finetuned-snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision 71bc94c8f9ea1e54fba11167004205a65e5da2cc -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("zenml/finetuned-snowflake-arctic-embed-m")
# Run inference
sentences = [
    'What is the expiration time for the GCP OAuth2 token in the ZenML configuration?',
    '━━━━━┛\n\nConfiguration\n\n┏━━━━━━━━━━━━┯━━━━━━━━━━━━┓┃ PROPERTY   │ VALUE      ┃\n\n┠────────────┼────────────┨\n\n┃ project_id │ zenml-core ┃\n\n┠────────────┼────────────┨\n\n┃ token      │ [HIDDEN]   ┃\n\n┗━━━━━━━━━━━━┷━━━━━━━━━━━━┛\n\nNote the temporary nature of the Service Connector. It will expire and become unusable in 1 hour:\n\nzenml service-connector list --name gcp-oauth2-token\n\nExample Command Output\n\n┏━━━━━━━━┯━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┯━━━━━━━━┯━━━━━━━━━┯━━━━━━━━━━━━┯━━━━━━━━┓\n\n┃ ACTIVE │ NAME             │ ID                                   │ TYPE   │ RESOURCE TYPES        │ RESOURCE NAME │ SHARED │ OWNER   │ EXPIRES IN │ LABELS ┃\n\n┠────────┼──────────────────┼──────────────────────────────────────┼────────┼───────────────────────┼───────────────┼────────┼─────────┼────────────┼────────┨\n\n┃        │ gcp-oauth2-token │ ec4d7d85-c71c-476b-aa76-95bf772c90da │ 🔵 gcp │ 🔵 gcp-generic        │ <multiple>    │ ➖     │ default │ 59m35s     │        ┃\n\n┃        │                  │                                      │        │ 📦 gcs-bucket         │               │        │         │            │        ┃\n\n┃        │                  │                                      │        │ 🌀 kubernetes-cluster │               │        │         │            │        ┃\n\n┃        │                  │                                      │        │ 🐳 docker-registry    │               │        │         │            │        ┃\n\n┗━━━━━━━━┷━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━┷━━━━━━━━━┷━━━━━━━━━━━━┷━━━━━━━━┛\n\nAuto-configuration\n\nThe GCP Service Connector allows auto-discovering and fetching credentials and configuration set up by the GCP CLI on your local host.',
    'Can you list the steps to set up a Docker registry on a Kubernetes cluster?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2952     |
| cosine_accuracy@3   | 0.5241     |
| cosine_accuracy@5   | 0.5843     |
| cosine_accuracy@10  | 0.6867     |
| cosine_precision@1  | 0.2952     |
| cosine_precision@3  | 0.1747     |
| cosine_precision@5  | 0.1169     |
| cosine_precision@10 | 0.0687     |
| cosine_recall@1     | 0.2952     |
| cosine_recall@3     | 0.5241     |
| cosine_recall@5     | 0.5843     |
| cosine_recall@10    | 0.6867     |
| cosine_ndcg@10      | 0.4908     |
| cosine_mrr@10       | 0.4284     |
| **cosine_map@100**  | **0.4358** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.259      |
| cosine_accuracy@3   | 0.506      |
| cosine_accuracy@5   | 0.5783     |
| cosine_accuracy@10  | 0.6446     |
| cosine_precision@1  | 0.259      |
| cosine_precision@3  | 0.1687     |
| cosine_precision@5  | 0.1157     |
| cosine_precision@10 | 0.0645     |
| cosine_recall@1     | 0.259      |
| cosine_recall@3     | 0.506      |
| cosine_recall@5     | 0.5783     |
| cosine_recall@10    | 0.6446     |
| cosine_ndcg@10      | 0.4548     |
| cosine_mrr@10       | 0.3935     |
| **cosine_map@100**  | **0.4034** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2711     |
| cosine_accuracy@3   | 0.4699     |
| cosine_accuracy@5   | 0.5663     |
| cosine_accuracy@10  | 0.6145     |
| cosine_precision@1  | 0.2711     |
| cosine_precision@3  | 0.1566     |
| cosine_precision@5  | 0.1133     |
| cosine_precision@10 | 0.0614     |
| cosine_recall@1     | 0.2711     |
| cosine_recall@3     | 0.4699     |
| cosine_recall@5     | 0.5663     |
| cosine_recall@10    | 0.6145     |
| cosine_ndcg@10      | 0.4443     |
| cosine_mrr@10       | 0.3894     |
| **cosine_map@100**  | **0.3989** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2169     |
| cosine_accuracy@3   | 0.4217     |
| cosine_accuracy@5   | 0.5181     |
| cosine_accuracy@10  | 0.5843     |
| cosine_precision@1  | 0.2169     |
| cosine_precision@3  | 0.1406     |
| cosine_precision@5  | 0.1036     |
| cosine_precision@10 | 0.0584     |
| cosine_recall@1     | 0.2169     |
| cosine_recall@3     | 0.4217     |
| cosine_recall@5     | 0.5181     |
| cosine_recall@10    | 0.5843     |
| cosine_ndcg@10      | 0.3964     |
| cosine_mrr@10       | 0.3365     |
| **cosine_map@100**  | **0.3466** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,490 training samples
* Columns: <code>positive</code>, <code>anchor</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                          | anchor                                                                               | negative                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               | string                                                                             |
  | details | <ul><li>min: 9 tokens</li><li>mean: 21.02 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 375.16 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 17.51 tokens</li><li>max: 31 tokens</li></ul> |
* Samples:
  | positive                                                                                                                           | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | negative                                                                                             |
  |:-----------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------|
  | <code>What details can you provide about the mlflow_training_pipeline runs listed in the ZenML documentation?</code>               | <code>mlflow_training_pipeline',                       ┃┃                        │               │                                         │ 'zenml_pipeline_run_uuid': 'a5d4faae-ef70-48f2-9893-6e65d5e51e98', 'zenml_workspace': '10e060b3-2f7e-463d-9ec8-3a211ef4e1f6', 'epochs': '5', 'optimizer': 'Adam', 'lr': '0.005'}     ┃<br><br>┠────────────────────────┼───────────────┼─────────────────────────────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┨<br><br>┃ tensorflow-mnist-model │ 2             │ Run #2 of the mlflow_training_pipeline. │ {'zenml_version': '0.34.0', 'zenml_run_name': 'mlflow_training_pipeline-2023_03_01-08_09_08_467212', 'zenml_pipeline_name': 'mlflow_training_pipeline',                       ┃<br><br>┃                        │               │                                         │ 'zenml_pipeline_run_uuid': '11858dcf-3e47-4b1a-82c5-6fa25ba4e037', 'zenml_workspace': '10e060b3-2f7e-463d-9ec8-3a211ef4e1f6', 'epochs': '5', 'optimizer': 'Adam', 'lr': '0.003'}     ┃<br><br>┠────────────────────────┼───────────────┼─────────────────────────────────────────┼──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┨<br><br>┃ tensorflow-mnist-model │ 1             │ Run #1 of the mlflow_training_pipeline. │ {'zenml_version': '0.34.0', 'zenml_run_name': 'mlflow_training_pipeline-2023_03_01-08_08_52_398499', 'zenml_pipeline_name': 'mlflow_training_pipeline',                       ┃<br><br>┃                        │               │                                         │ 'zenml_pipeline_run_uuid': '29fb22c1-6e0b-4431-9e04-226226506d16', 'zenml_workspace': '10e060b3-2f7e-463d-9ec8-3a211ef4e1f6', 'epochs': '5', 'optimizer': 'Adam', 'lr': '0.001'}     ┃</code>                                                                   | <code>Can you explain how to configure the TensorFlow settings for a different project?</code>       |
  | <code>How do you register a GCP Service Connector that uses account impersonation to access the zenml-bucket-sl GCS bucket?</code> | <code>esource-id zenml-bucket-sl<br><br>Example Command OutputError: Service connector 'gcp-empty-sa' verification failed: connector authorization failure: failed to fetch GCS bucket<br><br>zenml-bucket-sl: 403 GET https://storage.googleapis.com/storage/v1/b/zenml-bucket-sl?projection=noAcl&prettyPrint=false:<br><br>[email protected] does not have storage.buckets.get access to the Google Cloud Storage bucket.<br><br>Permission 'storage.buckets.get' denied on resource (or it may not exist).<br><br>Next, we'll register a GCP Service Connector that actually uses account impersonation to access the zenml-bucket-sl GCS bucket and verify that it can actually access the bucket:<br><br>zenml service-connector register gcp-impersonate-sa --type gcp --auth-method impersonation --service_account_json=@[email protected]  --project_id=zenml-core --target[email protected] --resource-type gcs-bucket --resource-id gs://zenml-bucket-sl<br><br>Example Command Output<br><br>Expanding argument value service_account_json to contents of file /home/stefan/aspyre/src/zenml/[email protected].<br><br>Successfully registered service connector `gcp-impersonate-sa` with access to the following resources:<br><br>┏━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━┓<br><br>┃ RESOURCE TYPE │ RESOURCE NAMES       ┃<br><br>┠───────────────┼──────────────────────┨<br><br>┃ 📦 gcs-bucket │ gs://zenml-bucket-sl ┃<br><br>┗━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━┛<br><br>External Account (GCP Workload Identity)<br><br>Use GCP workload identity federation to authenticate to GCP services using AWS IAM credentials, Azure Active Directory credentials or generic OIDC tokens.</code>                                                                                                                                                                                                                                                                                   | <code>What is the process for setting up a ZenML pipeline using AWS IAM credentials?</code>          |
  | <code>Can you explain how data validation helps in detecting data drift and model drift in ZenML pipelines?</code>                 | <code>of your models at different stages of development.if you have pipelines that regularly ingest new data, you should use data validation to run regular data integrity checks to signal problems before they are propagated downstream.<br><br>in continuous training pipelines, you should use data validation techniques to compare new training data against a data reference and to compare the performance of newly trained models against previous ones.<br><br>when you have pipelines that automate batch inference or if you regularly collect data used as input in online inference, you should use data validation to run data drift analyses and detect training-serving skew, data drift and model drift.<br><br>Data Validator Flavors<br><br>Data Validator are optional stack components provided by integrations. The following table lists the currently available Data Validators and summarizes their features and the data types and model types that they can be used with in ZenML pipelines:<br><br>Data Validator Validation Features Data Types Model Types Notes Flavor/Integration Deepchecks data quality<br>data drift<br>model drift<br>model performance tabular: pandas.DataFrame CV: torch.utils.data.dataloader.DataLoader tabular: sklearn.base.ClassifierMixin CV: torch.nn.Module Add Deepchecks data and model validation tests to your pipelines deepchecks Evidently data quality<br>data drift<br>model drift<br>model performance tabular: pandas.DataFrame N/A Use Evidently to generate a variety of data quality and data/model drift reports and visualizations evidently Great Expectations data profiling<br>data quality tabular: pandas.DataFrame N/A Perform data testing, documentation and profiling with Great Expectations great_expectations Whylogs/WhyLabs data drift tabular: pandas.DataFrame N/A Generate data profiles with whylogs and upload them to WhyLabs whylogs<br><br>If you would like to see the available flavors of Data Validator, you can use the command:<br><br>zenml data-validator flavor list<br><br>How to use it</code> | <code>What are the best practices for deploying web applications using Docker and Kubernetes?</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "TripletLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: True
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step  | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.6667  | 1     | 0.3884                 | 0.4332                 | 0.4464                 | 0.3140                |
| **2.0** | **3** | **0.4064**             | **0.4195**             | **0.4431**             | **0.3553**            |
| 2.6667  | 4     | 0.3989                 | 0.4034                 | 0.4358                 | 0.3466                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### TripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification}, 
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->