File size: 72,624 Bytes
87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1782369 1aace24 1782369 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 1782369 1aace24 1782369 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 731ef3e 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 87d67d4 1aace24 1782369 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1782369 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 1782369 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1782369 1aace24 1782369 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 1782369 1aace24 87d67d4 1782369 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1782369 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1782369 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1782369 1aace24 1782369 1aace24 1782369 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1782369 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 1aace24 87d67d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 |
---
base_model: Snowflake/snowflake-arctic-embed-m
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1490
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What is the RESOURCE NAME for the kubernetes-cluster in the ZenML
documentation?
sentences:
- ' ┃┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
┃ RESOURCE TYPES │ 🌀 kubernetes-cluster ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
┃ RESOURCE NAME │ arn:aws:eks:us-east-1:715803424590:cluster/zenhacks-cluster ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
┃ SECRET ID │ ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
┃ SESSION DURATION │ N/A ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
┃ EXPIRES IN │ 11h59m57s ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
┃ OWNER │ default ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
┃ WORKSPACE │ default ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
┃ SHARED │ ➖ ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
┃ CREATED_AT │ 2023-06-16 10:17:46.931091 ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────┨
┃ UPDATED_AT │ 2023-06-16 10:17:46.931094 ┃
┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
Configuration'
- 'urns it with the configuration of the cloud stack.Based on the stack info and
pipeline specification, the client builds and pushes an image to the container
registry. The image contains the environment needed to execute the pipeline and
the code of the steps.
The client creates a run in the orchestrator. For example, in the case of the
Skypilot orchestrator, it creates a virtual machine in the cloud with some commands
to pull and run a Docker image from the specified container registry.
The orchestrator pulls the appropriate image from the container registry as it''s
executing the pipeline (each step has an image).
As each pipeline runs, it stores artifacts physically in the artifact store. Of
course, this artifact store needs to be some form of cloud storage.
As each pipeline runs, it reports status back to the ZenML server and optionally
queries the server for metadata.
Provisioning and registering a Skypilot orchestrator alongside a container registry
While there are detailed docs on how to set up a Skypilot orchestrator and a container
registry on each public cloud, we have put the most relevant details here for
convenience:
In order to launch a pipeline on AWS with the SkyPilot orchestrator, the first
thing that you need to do is to install the AWS and Skypilot integrations:
zenml integration install aws skypilot_aws -y
Before we start registering any components, there is another step that we have
to execute. As we explained in the previous section, components such as orchestrators
and container registries often require you to set up the right permissions. In
ZenML, this process is simplified with the use of Service Connectors. For this
example, we need to use the IAM role authentication method of our AWS service
connector:
AWS_PROFILE=<AWS_PROFILE> zenml service-connector register cloud_connector --type
aws --auto-configure
Once the service connector is set up, we can register a Skypilot orchestrator:
zenml orchestrator register skypilot_orchestrator -f vm_aws'
- 'pose -f /path/to/docker-compose.yml -p zenml up -dYou need to visit the ZenML
dashboard at http://localhost:8080 to activate the server by creating an initial
admin account. You can then connect your client to the server with the web login
flow:
zenml connect --url http://localhost:8080
Tearing down the installation is as simple as running:
docker-compose -p zenml down
Database backup and recovery
An automated database backup and recovery feature is enabled by default for all
Docker deployments. The ZenML server will automatically back up the database in-memory
before every database schema migration and restore it if the migration fails.
The database backup automatically created by the ZenML server is only temporary
and only used as an immediate recovery in case of database migration failures.
It is not meant to be used as a long-term backup solution. If you need to back
up your database for long-term storage, you should use a dedicated backup solution.
Several database backup strategies are supported, depending on where and how the
backup is stored. The strategy can be configured by means of the ZENML_STORE_BACKUP_STRATEGY
environment variable:
disabled - no backup is performed
in-memory - the database schema and data are stored in memory. This is the fastest
backup strategy, but the backup is not persisted across container restarts, so
no manual intervention is possible in case the automatic DB recovery fails after
a failed DB migration. Adequate memory resources should be allocated to the ZenML
server container when using this backup strategy with larger databases. This is
the default backup strategy.'
- source_sentence: What are the benefits of deploying ZenML to a production environment?
sentences:
- 'graph that includes custom TRANSFORMER and ROUTER.If you are looking for a more
easy way to deploy your models locally, you can use the MLflow Model Deployer
flavor.
How to deploy it?
ZenML provides a Seldon Core flavor build on top of the Seldon Core Integration
to allow you to deploy and use your models in a production-grade environment.
In order to use the integration you need to install it on your local machine to
be able to register a Seldon Core Model deployer with ZenML and add it to your
stack:
zenml integration install seldon -y
To deploy and make use of the Seldon Core integration we need to have the following
prerequisites:
access to a Kubernetes cluster. This can be configured using the kubernetes_context
configuration attribute to point to a local kubectl context or an in-cluster configuration,
but the recommended approach is to use a Service Connector to link the Seldon
Deployer Stack Component to a Kubernetes cluster.
Seldon Core needs to be preinstalled and running in the target Kubernetes cluster.
Check out the official Seldon Core installation instructions or the EKS installation
example below.
models deployed with Seldon Core need to be stored in some form of persistent
shared storage that is accessible from the Kubernetes cluster where Seldon Core
is installed (e.g. AWS S3, GCS, Azure Blob Storage, etc.). You can use one of
the supported remote artifact store flavors to store your models as part of your
stack. For a smoother experience running Seldon Core with a cloud artifact store,
we also recommend configuring explicit credentials for the artifact store. The
Seldon Core model deployer knows how to automatically convert those credentials
in the format needed by Seldon Core model servers to authenticate to the storage
back-end where models are stored.
Since the Seldon Model Deployer is interacting with the Seldon Core model server
deployed on a Kubernetes cluster, you need to provide a set of configuration parameters.
These parameters are:'
- 'S Secrets Manager accounts or regions may be used.Always make sure that the backup
Secrets Store is configured to use a different location than the primary Secrets
Store. The location can be different in terms of the Secrets Store back-end type
(e.g. internal database vs. AWS Secrets Manager) or the actual location of the
Secrets Store back-end (e.g. different AWS Secrets Manager account or region,
GCP Secret Manager project or Azure Key Vault''s vault).
Using the same location for both the primary and backup Secrets Store will not
provide any additional benefits and may even result in unexpected behavior.
When a backup secrets store is in use, the ZenML Server will always attempt to
read and write secret values from/to the primary Secrets Store first while ensuring
to keep the backup Secrets Store in sync. If the primary Secrets Store is unreachable,
if the secret values are not found there or any otherwise unexpected error occurs,
the ZenML Server falls back to reading and writing from/to the backup Secrets
Store. Only if the backup Secrets Store is also unavailable, the ZenML Server
will return an error.
In addition to the hidden backup operations, users can also explicitly trigger
a backup operation by using the zenml secret backup CLI command. This command
will attempt to read all secrets from the primary Secrets Store and write them
to the backup Secrets Store. Similarly, the zenml secret restore CLI command can
be used to restore secrets from the backup Secrets Store to the primary Secrets
Store. These CLI commands are useful for migrating secrets from one Secrets Store
to another.
Secrets migration strategy
Sometimes you may need to change the external provider or location where secrets
values are stored by the Secrets Store. The immediate implication of this is that
the ZenML server will no longer be able to access existing secrets with the new
configuration until they are also manually copied to the new location. Some examples
of such changes include:'
- '🤔Deploying ZenML
Why do we need to deploy ZenML?
Moving your ZenML Server to a production environment offers several benefits over
staying local:
Scalability: Production environments are designed to handle large-scale workloads,
allowing your models to process more data and deliver faster results.
Reliability: Production-grade infrastructure ensures high availability and fault
tolerance, minimizing downtime and ensuring consistent performance.
Collaboration: A shared production environment enables seamless collaboration
between team members, making it easier to iterate on models and share insights.
Despite these advantages, transitioning to production can be challenging due to
the complexities involved in setting up the needed infrastructure.
ZenML Server
When you first get started with ZenML, it relies with the following architecture
on your machine.
The SQLite database that you can see in this diagram is used to store information
about pipelines, pipeline runs, stacks, and other configurations. Users can run
the zenml up command to spin up a local REST server to serve the dashboard. The
diagram for this looks as follows:
In Scenario 2, the zenml up command implicitly connects the client to the server.
Currently the ZenML server supports a legacy and a brand-new version of the dashboard.
To use the legacy version simply use the following command zenml up --legacy
In order to move into production, the ZenML server needs to be deployed somewhere
centrally so that the different cloud stack components can read from and write
to the server. Additionally, this also allows all your team members to connect
to it and share stacks and pipelines.
Deploying a ZenML Server'
- source_sentence: What is the tenant_id value in the configuration section?
sentences:
- '─────────────────────────────────────────────────┨┃ OWNER │ default ┃
┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨
┃ WORKSPACE │ default ┃
┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨
┃ SHARED │ ➖ ┃
┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨
┃ CREATED_AT │ 2023-06-20 19:16:26.802374 ┃
┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨
┃ UPDATED_AT │ 2023-06-20 19:16:26.802378 ┃
┗━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
Configuration
┏━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ PROPERTY │ VALUE ┃
┠───────────────┼──────────────────────────────────────┨
┃ tenant_id │ a79ff333-8f45-4a74-a42e-68871c17b7fb ┃
┠───────────────┼──────────────────────────────────────┨
┃ client_id │ 8926254a-8c3f-430a-a2fd-bdab234d491e ┃
┠───────────────┼──────────────────────────────────────┨
┃ client_secret │ [HIDDEN] ┃
┗━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
Azure Access Token
Uses temporary Azure access tokens explicitly configured by the user or auto-configured
from a local environment.'
- ' should pick the one that best fits your use case.If you already have one or
more GCP Service Connectors configured in your ZenML deployment, you can check
which of them can be used to access generic GCP resources like the GCP Image Builder
required for your GCP Image Builder by running e.g.:
zenml service-connector list-resources --resource-type gcp-generic
Example Command Output
The following ''gcp-generic'' resources can be accessed by service connectors
configured in your workspace:
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓
┃ CONNECTOR ID │ CONNECTOR NAME │ CONNECTOR TYPE │ RESOURCE
TYPE │ RESOURCE NAMES ┃
┠──────────────────────────────────────┼────────────────┼────────────────┼────────────────┼────────────────┨
┃ bfdb657d-d808-47e7-9974-9ba6e4919d83 │ gcp-generic │ 🔵 gcp │ 🔵 gcp-generic
│ zenml-core ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛
After having set up or decided on a GCP Service Connector to use to authenticate
to GCP, you can register the GCP Image Builder as follows:
zenml image-builder register <IMAGE_BUILDER_NAME> \
--flavor=gcp \
--cloud_builder_image=<BUILDER_IMAGE_NAME> \
--network=<DOCKER_NETWORK> \
--build_timeout=<BUILD_TIMEOUT_IN_SECONDS>
# Connect the GCP Image Builder to GCP via a GCP Service Connector
zenml image-builder connect <IMAGE_BUILDER_NAME> -i
A non-interactive version that connects the GCP Image Builder to a target GCP
Service Connector:
zenml image-builder connect <IMAGE_BUILDER_NAME> --connector <CONNECTOR_ID>
Example Command Output
$ zenml image-builder connect gcp-image-builder --connector gcp-generic
Successfully connected image builder `gcp-image-builder` to the following resources:
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓'
- 'gistry or even more than one type of AWS resource:zenml service-connector register
--type aws -i
A non-interactive CLI example that leverages the AWS CLI configuration on your
local machine to auto-configure an AWS Service Connector targeting an ECR registry
is:
zenml service-connector register <CONNECTOR_NAME> --type aws --resource-type docker-registry
--auto-configure
Example Command Output
$ zenml service-connector register aws-us-east-1 --type aws --resource-type docker-registry
--auto-configure
⠸ Registering service connector ''aws-us-east-1''...
Successfully registered service connector `aws-us-east-1` with access to the following
resources:
┏━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ RESOURCE TYPE │ RESOURCE NAMES ┃
┠────────────────────┼──────────────────────────────────────────────┨
┃ 🐳 docker-registry │ 715803424590.dkr.ecr.us-east-1.amazonaws.com ┃
┗━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
Note: Please remember to grant the entity associated with your AWS credentials
permissions to read and write to one or more ECR repositories as well as to list
accessible ECR repositories. For a full list of permissions required to use an
AWS Service Connector to access an ECR registry, please refer to the AWS Service
Connector ECR registry resource type documentation or read the documentation available
in the interactive CLI commands and dashboard. The AWS Service Connector supports
many different authentication methods with different levels of security and convenience.
You should pick the one that best fits your use case.
If you already have one or more AWS Service Connectors configured in your ZenML
deployment, you can check which of them can be used to access the ECR registry
you want to use for your AWS Container Registry by running e.g.:
zenml service-connector list-resources --connector-type aws --resource-type docker-registry
Example Command Output'
- source_sentence: How can I customize the Docker settings for individual steps in
a ZenML pipeline?
sentences:
- '🌎Environment Variables
How to control ZenML behavior with environmental variables.
There are a few pre-defined environmental variables that can be used to control
the behavior of ZenML. See the list below with default values and options:
Logging verbosity
export ZENML_LOGGING_VERBOSITY=INFO
Choose from INFO, WARN, ERROR, CRITICAL, DEBUG.
Disable step logs
Usually, ZenML stores step logs in the artifact store, but this can sometimes
cause performance bottlenecks, especially if the code utilizes progress bars.
If you want to configure whether logged output from steps is stored or not, set
the ZENML_DISABLE_STEP_LOGS_STORAGE environment variable to true. Note that this
will mean that logs from your steps will no longer be stored and thus won''t be
visible on the dashboard anymore.
export ZENML_DISABLE_STEP_LOGS_STORAGE=false
ZenML repository path
To configure where ZenML will install and look for its repository, set the environment
variable ZENML_REPOSITORY_PATH.
export ZENML_REPOSITORY_PATH=/path/to/somewhere
Analytics
Please see our full page on what analytics are tracked and how you can opt out,
but the quick summary is that you can set this to false if you want to opt out
of analytics.
export ZENML_ANALYTICS_OPT_IN=false
Debug mode
Setting to true switches to developer mode:
export ZENML_DEBUG=true
Active stack
Setting the ZENML_ACTIVE_STACK_ID to a specific UUID will make the corresponding
stack the active stack:
export ZENML_ACTIVE_STACK_ID=<UUID-OF-YOUR-STACK>
Prevent pipeline execution
When true, this prevents a pipeline from executing:
export ZENML_PREVENT_PIPELINE_EXECUTION=false
Disable rich traceback
Set to false to disable the rich traceback:
export ZENML_ENABLE_RICH_TRACEBACK=true
Disable colourful logging
If you wish to disable colourful logging, set the following environment variable:
ZENML_LOGGING_COLORS_DISABLED=true'
- 'pd.Series(model.predict(data))
return predictionsHowever, this approach has the downside that if the step is
cached, then it could lead to unexpected results. You could simply disable the
cache in the above step or the corresponding pipeline. However, one other way
of achieving this would be to resolve the artifact at the pipeline level:
from typing_extensions import Annotated
from zenml import get_pipeline_context, pipeline, Model
from zenml.enums import ModelStages
import pandas as pd
from sklearn.base import ClassifierMixin
@step
def predict(
model: ClassifierMixin,
data: pd.DataFrame,
) -> Annotated[pd.Series, "predictions"]:
predictions = pd.Series(model.predict(data))
return predictions
@pipeline(
model=Model(
name="iris_classifier",
# Using the production stage
version=ModelStages.PRODUCTION,
),
def do_predictions():
# model name and version are derived from pipeline context
model = get_pipeline_context().model
inference_data = load_data()
predict(
# Here, we load in the `trained_model` from a trainer step
model=model.get_model_artifact("trained_model"),
data=inference_data,
if __name__ == "__main__":
do_predictions()
Ultimately, both approaches are fine. You should decide which one to use based
on your own preferences.
PreviousLoad artifacts into memory
NextVisualizing artifacts
Last updated 15 days ago'
- 'Docker settings on a step
You have the option to customize the Docker settings at a step level.
By default every step of a pipeline uses the same Docker image that is defined
at the pipeline level. Sometimes your steps will have special requirements that
make it necessary to define a different Docker image for one or many steps. This
can easily be accomplished by adding the DockerSettings to the step decorator
directly.
from zenml import step
from zenml.config import DockerSettings
@step(
settings={
"docker": DockerSettings(
parent_image="pytorch/pytorch:1.12.1-cuda11.3-cudnn8-runtime"
def training(...):
...
Alternatively, this can also be done within the configuration file.
steps:
training:
settings:
docker:
parent_image: pytorch/pytorch:2.2.0-cuda11.8-cudnn8-runtime
required_integrations:
gcp
github
requirements:
zenml # Make sure to include ZenML for other parent images
numpy
PreviousDocker settings on a pipeline
NextSpecify pip dependencies and apt packages
Last updated 19 days ago'
- source_sentence: How do I configure the Kubernetes Service Connector to connect
ZenML to Kubernetes clusters?
sentences:
- 'Kubernetes Service Connector
Configuring Kubernetes Service Connectors to connect ZenML to Kubernetes clusters.
The ZenML Kubernetes service connector facilitates authenticating and connecting
to a Kubernetes cluster. The connector can be used to access to any generic Kubernetes
cluster by providing pre-authenticated Kubernetes python clients to Stack Components
that are linked to it and also allows configuring the local Kubernetes CLI (i.e.
kubectl).
Prerequisites
The Kubernetes Service Connector is part of the Kubernetes ZenML integration.
You can either install the entire integration or use a pypi extra to install it
independently of the integration:
pip install "zenml[connectors-kubernetes]" installs only prerequisites for the
Kubernetes Service Connector Type
zenml integration install kubernetes installs the entire Kubernetes ZenML integration
A local Kubernetes CLI (i.e. kubectl ) and setting up local kubectl configuration
contexts is not required to access Kubernetes clusters in your Stack Components
through the Kubernetes Service Connector.
$ zenml service-connector list-types --type kubernetes
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┯━━━━━━━┯━━━━━━━━┓
┃ NAME │ TYPE │ RESOURCE TYPES │ AUTH
METHODS │ LOCAL │ REMOTE ┃
┠──────────────────────────────┼───────────────┼───────────────────────┼──────────────┼───────┼────────┨
┃ Kubernetes Service Connector │ 🌀 kubernetes │ 🌀 kubernetes-cluster │ password │
✅ │ ✅ ┃
┃ │ │ │ token │ │ ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┷━━━━━━━┷━━━━━━━━┛
Resource Types
The Kubernetes Service Connector only supports authenticating to and granting
access to a generic Kubernetes cluster. This type of resource is identified by
the kubernetes-cluster Resource Type.'
- 'to the container registry.
Authentication MethodsIntegrating and using an Azure Container Registry in your
pipelines is not possible without employing some form of authentication. If you''re
looking for a quick way to get started locally, you can use the Local Authentication
method. However, the recommended way to authenticate to the Azure cloud platform
is through an Azure Service Connector. This is particularly useful if you are
configuring ZenML stacks that combine the Azure Container Registry with other
remote stack components also running in Azure.
This method uses the Docker client authentication available in the environment
where the ZenML code is running. On your local machine, this is the quickest way
to configure an Azure Container Registry. You don''t need to supply credentials
explicitly when you register the Azure Container Registry, as it leverages the
local credentials and configuration that the Azure CLI and Docker client store
on your local machine. However, you will need to install and set up the Azure
CLI on your machine as a prerequisite, as covered in the Azure CLI documentation,
before you register the Azure Container Registry.
With the Azure CLI installed and set up with credentials, you need to login to
the container registry so Docker can pull and push images:
# Fill your REGISTRY_NAME in the placeholder in the following command.
# You can find the REGISTRY_NAME as part of your registry URI: `<REGISTRY_NAME>.azurecr.io`
az acr login --name=<REGISTRY_NAME>
Stacks using the Azure Container Registry set up with local authentication are
not portable across environments. To make ZenML pipelines fully portable, it is
recommended to use an Azure Service Connector to link your Azure Container Registry
to the remote ACR registry.'
- 'he Post-execution workflow has changed as follows:The get_pipelines and get_pipeline
methods have been moved out of the Repository (i.e. the new Client ) class and
lie directly in the post_execution module now. To use the user has to do:
from zenml.post_execution import get_pipelines, get_pipeline
New methods to directly get a run have been introduced: get_run and get_unlisted_runs
method has been introduced to get unlisted runs.
Usage remains largely similar. Please read the new docs for post-execution to
inform yourself of what further has changed.
How to migrate: Replace all post-execution workflows from the paradigm of Repository.get_pipelines
or Repository.get_pipeline_run to the corresponding post_execution methods.
📡Future Changes
While this rehaul is big and will break previous releases, we do have some more
work left to do. However we also expect this to be the last big rehaul of ZenML
before our 1.0.0 release, and no other release will be so hard breaking as this
one. Currently planned future breaking changes are:
Following the metadata store, the secrets manager stack component might move out
of the stack.
ZenML StepContext might be deprecated.
🐞 Reporting Bugs
While we have tried our best to document everything that has changed, we realize
that mistakes can be made and smaller changes overlooked. If this is the case,
or you encounter a bug at any time, the ZenML core team and community are available
around the clock on the growing Slack community.
For bug reports, please also consider submitting a GitHub Issue.
Lastly, if the new changes have left you desiring a feature, then consider adding
it to our public feature voting board. Before doing so, do check what is already
on there and consider upvoting the features you desire the most.
PreviousMigration guide
NextMigration guide 0.23.0 → 0.30.0
Last updated 12 days ago'
model-index:
- name: zenml/finetuned-snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.3614457831325301
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6024096385542169
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6987951807228916
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7831325301204819
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3614457831325301
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2008032128514056
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1397590361445783
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07831325301204817
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3614457831325301
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6024096385542169
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6987951807228916
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7831325301204819
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5756072832948543
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5091365461847391
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5165480061197206
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.3674698795180723
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6144578313253012
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6987951807228916
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7710843373493976
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3674698795180723
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2048192771084337
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1397590361445783
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07710843373493974
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3674698795180723
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6144578313253012
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6987951807228916
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7710843373493976
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5732430988480587
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.509569229298145
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5167702755195493
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.29518072289156627
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5542168674698795
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6506024096385542
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7469879518072289
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.29518072289156627
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18473895582329317
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1301204819277108
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07469879518072288
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.29518072289156627
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5542168674698795
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6506024096385542
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7469879518072289
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5199227959343978
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.44722939376553855
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4541483656933914
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.28313253012048195
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5180722891566265
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5843373493975904
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6746987951807228
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.28313253012048195
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.17269076305220882
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11686746987951806
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06746987951807228
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.28313253012048195
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5180722891566265
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5843373493975904
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6746987951807228
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.47987356927913916
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4177519602218399
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4261749847732839
name: Cosine Map@100
---
# zenml/finetuned-snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision 71bc94c8f9ea1e54fba11167004205a65e5da2cc -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zenml/finetuned-snowflake-arctic-embed-m")
# Run inference
sentences = [
'How do I configure the Kubernetes Service Connector to connect ZenML to Kubernetes clusters?',
'Kubernetes Service Connector\n\nConfiguring Kubernetes Service Connectors to connect ZenML to Kubernetes clusters.\n\nThe ZenML Kubernetes service connector facilitates authenticating and connecting to a Kubernetes cluster. The connector can be used to access to any generic Kubernetes cluster by providing pre-authenticated Kubernetes python clients to Stack Components that are linked to it and also allows configuring the local Kubernetes CLI (i.e. kubectl).\n\nPrerequisites\n\nThe Kubernetes Service Connector is part of the Kubernetes ZenML integration. You can either install the entire integration or use a pypi extra to install it independently of the integration:\n\npip install "zenml[connectors-kubernetes]" installs only prerequisites for the Kubernetes Service Connector Type\n\nzenml integration install kubernetes installs the entire Kubernetes ZenML integration\n\nA local Kubernetes CLI (i.e. kubectl ) and setting up local kubectl configuration contexts is not required to access Kubernetes clusters in your Stack Components through the Kubernetes Service Connector.\n\n$ zenml service-connector list-types --type kubernetes\n\n┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━┯━━━━━━━┯━━━━━━━━┓\n\n┃ NAME │ TYPE │ RESOURCE TYPES │ AUTH METHODS │ LOCAL │ REMOTE ┃\n\n┠──────────────────────────────┼───────────────┼───────────────────────┼──────────────┼───────┼────────┨\n\n┃ Kubernetes Service Connector │ 🌀 kubernetes │ 🌀 kubernetes-cluster │ password │ ✅ │ ✅ ┃\n\n┃ │ │ │ token │ │ ┃\n\n┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━┷━━━━━━━┷━━━━━━━━┛\n\nResource Types\n\nThe Kubernetes Service Connector only supports authenticating to and granting access to a generic Kubernetes cluster. This type of resource is identified by the kubernetes-cluster Resource Type.',
'he Post-execution workflow has changed as follows:The get_pipelines and get_pipeline methods have been moved out of the Repository (i.e. the new Client ) class and lie directly in the post_execution module now. To use the user has to do:\n\nfrom zenml.post_execution import get_pipelines, get_pipeline\n\nNew methods to directly get a run have been introduced: get_run and get_unlisted_runs method has been introduced to get unlisted runs.\n\nUsage remains largely similar. Please read the new docs for post-execution to inform yourself of what further has changed.\n\nHow to migrate: Replace all post-execution workflows from the paradigm of Repository.get_pipelines or Repository.get_pipeline_run to the corresponding post_execution methods.\n\n📡Future Changes\n\nWhile this rehaul is big and will break previous releases, we do have some more work left to do. However we also expect this to be the last big rehaul of ZenML before our 1.0.0 release, and no other release will be so hard breaking as this one. Currently planned future breaking changes are:\n\nFollowing the metadata store, the secrets manager stack component might move out of the stack.\n\nZenML StepContext might be deprecated.\n\n🐞 Reporting Bugs\n\nWhile we have tried our best to document everything that has changed, we realize that mistakes can be made and smaller changes overlooked. If this is the case, or you encounter a bug at any time, the ZenML core team and community are available around the clock on the growing Slack community.\n\nFor bug reports, please also consider submitting a GitHub Issue.\n\nLastly, if the new changes have left you desiring a feature, then consider adding it to our public feature voting board. Before doing so, do check what is already on there and consider upvoting the features you desire the most.\n\nPreviousMigration guide\n\nNextMigration guide 0.23.0 → 0.30.0\n\nLast updated 12 days ago',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3614 |
| cosine_accuracy@3 | 0.6024 |
| cosine_accuracy@5 | 0.6988 |
| cosine_accuracy@10 | 0.7831 |
| cosine_precision@1 | 0.3614 |
| cosine_precision@3 | 0.2008 |
| cosine_precision@5 | 0.1398 |
| cosine_precision@10 | 0.0783 |
| cosine_recall@1 | 0.3614 |
| cosine_recall@3 | 0.6024 |
| cosine_recall@5 | 0.6988 |
| cosine_recall@10 | 0.7831 |
| cosine_ndcg@10 | 0.5756 |
| cosine_mrr@10 | 0.5091 |
| **cosine_map@100** | **0.5165** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3675 |
| cosine_accuracy@3 | 0.6145 |
| cosine_accuracy@5 | 0.6988 |
| cosine_accuracy@10 | 0.7711 |
| cosine_precision@1 | 0.3675 |
| cosine_precision@3 | 0.2048 |
| cosine_precision@5 | 0.1398 |
| cosine_precision@10 | 0.0771 |
| cosine_recall@1 | 0.3675 |
| cosine_recall@3 | 0.6145 |
| cosine_recall@5 | 0.6988 |
| cosine_recall@10 | 0.7711 |
| cosine_ndcg@10 | 0.5732 |
| cosine_mrr@10 | 0.5096 |
| **cosine_map@100** | **0.5168** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2952 |
| cosine_accuracy@3 | 0.5542 |
| cosine_accuracy@5 | 0.6506 |
| cosine_accuracy@10 | 0.747 |
| cosine_precision@1 | 0.2952 |
| cosine_precision@3 | 0.1847 |
| cosine_precision@5 | 0.1301 |
| cosine_precision@10 | 0.0747 |
| cosine_recall@1 | 0.2952 |
| cosine_recall@3 | 0.5542 |
| cosine_recall@5 | 0.6506 |
| cosine_recall@10 | 0.747 |
| cosine_ndcg@10 | 0.5199 |
| cosine_mrr@10 | 0.4472 |
| **cosine_map@100** | **0.4541** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2831 |
| cosine_accuracy@3 | 0.5181 |
| cosine_accuracy@5 | 0.5843 |
| cosine_accuracy@10 | 0.6747 |
| cosine_precision@1 | 0.2831 |
| cosine_precision@3 | 0.1727 |
| cosine_precision@5 | 0.1169 |
| cosine_precision@10 | 0.0675 |
| cosine_recall@1 | 0.2831 |
| cosine_recall@3 | 0.5181 |
| cosine_recall@5 | 0.5843 |
| cosine_recall@10 | 0.6747 |
| cosine_ndcg@10 | 0.4799 |
| cosine_mrr@10 | 0.4178 |
| **cosine_map@100** | **0.4262** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,490 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 21.2 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 376.51 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| positive | anchor |
|:--------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>How is the verification process different for multi-instance and single-instance Service Connectors?</code> | <code>ing resources:<br><br>┏━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┓┃ RESOURCE TYPE │ RESOURCE NAMES ┃<br><br>┠───────────────┼────────────────┨<br><br>┃ 📦 s3-bucket │ s3://zenfiles ┃<br><br>┗━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┛<br><br>The following might help understand the difference between scopes:<br><br>the difference between a multi-instance and a multi-type Service Connector is that the Resource Type scope is locked to a particular value during configuration for the multi-instance Service Connector<br><br>similarly, the difference between a multi-instance and a multi-type Service Connector is that the Resource Name (Resource ID) scope is locked to a particular value during configuration for the single-instance Service Connector<br><br>Service Connector Verification<br><br>When registering Service Connectors, the authentication configuration and credentials are automatically verified to ensure that they can indeed be used to gain access to the target resources:<br><br>for multi-type Service Connectors, this verification means checking that the configured credentials can be used to authenticate successfully to the remote service, as well as listing all resources that the credentials have permission to access for each Resource Type supported by the Service Connector Type.<br><br>for multi-instance Service Connectors, this verification step means listing all resources that the credentials have permission to access in addition to validating that the credentials can be used to authenticate to the target service or platform.<br><br>for single-instance Service Connectors, the verification step simply checks that the configured credentials have permission to access the target resource.<br><br>The verification can also be performed later on an already registered Service Connector. Furthermore, for multi-type and multi-instance Service Connectors, the verification operation can be scoped to a Resource Type and a Resource Name.<br><br>The following shows how a multi-type, a multi-instance and a single-instance Service Connector can be verified with multiple scopes after registration.</code> |
| <code>What are the benefits of using the SkyPilot VM Orchestrator in ZenML for running machine learning workloads?</code> | <code>Skypilot VM Orchestrator<br><br>Orchestrating your pipelines to run on VMs using SkyPilot.<br><br>The SkyPilot VM Orchestrator is an integration provided by ZenML that allows you to provision and manage virtual machines (VMs) on any cloud provider supported by the SkyPilot framework. This integration is designed to simplify the process of running machine learning workloads on the cloud, offering cost savings, high GPU availability, and managed execution, We recommend using the SkyPilot VM Orchestrator if you need access to GPUs for your workloads, but don't want to deal with the complexities of managing cloud infrastructure or expensive managed solutions.<br><br>This component is only meant to be used within the context of a remote ZenML deployment scenario. Usage with a local ZenML deployment may lead to unexpected behavior!<br><br>SkyPilot VM Orchestrator is currently supported only for Python 3.8 and 3.9.<br><br>When to use it<br><br>You should use the SkyPilot VM Orchestrator if:<br><br>you want to maximize cost savings by leveraging spot VMs and auto-picking the cheapest VM/zone/region/cloud.<br><br>you want to ensure high GPU availability by provisioning VMs in all zones/regions/clouds you have access to.<br><br>you don't need a built-in UI of the orchestrator. (You can still use ZenML's Dashboard to view and monitor your pipelines/artifacts.)<br><br>you're not willing to maintain Kubernetes-based solutions or pay for managed solutions like Sagemaker.<br><br>How it works<br><br>The orchestrator leverages the SkyPilot framework to handle the provisioning and scaling of VMs. It automatically manages the process of launching VMs for your pipelines, with support for both on-demand and managed spot VMs. While you can select the VM type you want to use, the orchestrator also includes an optimizer that automatically selects the cheapest VM/zone/region/cloud for your workloads. Finally, the orchestrator includes an autostop feature that cleans up idle clusters, preventing unnecessary cloud costs.</code> |
| <code>How do I register a GCS Artifact Store using the ZenML CLI?</code> | <code>se Python <3.11 together with the GCP integration.The GCS Artifact Store flavor is provided by the GCP ZenML integration, you need to install it on your local machine to be able to register a GCS Artifact Store and add it to your stack:<br><br>zenml integration install gcp -y<br><br>The only configuration parameter mandatory for registering a GCS Artifact Store is the root path URI, which needs to point to a GCS bucket and take the form gs://bucket-name. Please read the Google Cloud Storage documentation on how to configure a GCS bucket.<br><br>With the URI to your GCS bucket known, registering a GCS Artifact Store can be done as follows:<br><br># Register the GCS artifact store<br><br>zenml artifact-store register gs_store -f gcp --path=gs://bucket-name<br><br># Register and set a stack with the new artifact store<br><br>zenml stack register custom_stack -a gs_store ... --set<br><br>Depending on your use case, however, you may also need to provide additional configuration parameters pertaining to authentication to match your deployment scenario.<br><br>Infrastructure Deployment<br><br>A GCS Artifact Store can be deployed directly from the ZenML CLI:<br><br>zenml artifact-store deploy gcs_artifact_store --flavor=gcp --provider=gcp ...<br><br>You can pass other configurations specific to the stack components as key-value arguments. If you don't provide a name, a random one is generated for you. For more information about how to work use the CLI for this, please refer to the dedicated documentation section.<br><br>Authentication Methods<br><br>Integrating and using a GCS Artifact Store in your pipelines is not possible without employing some form of authentication. If you're looking for a quick way to get started locally, you can use the Implicit Authentication method. However, the recommended way to authenticate to the GCP cloud platform is through a GCP Service Connector. This is particularly useful if you are configuring ZenML stacks that combine the GCS Artifact Store with other remote stack components also running in GCP.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: True
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.6667 | 1 | 0.4134 | 0.4621 | 0.4641 | 0.3385 |
| 2.0 | 3 | 0.4522 | 0.5063 | 0.5112 | 0.4202 |
| **2.6667** | **4** | **0.4541** | **0.5168** | **0.5165** | **0.4262** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |