File size: 74,841 Bytes
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782369
 
87d67d4
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
 
 
 
87d67d4
 
1782369
 
 
 
 
 
87d67d4
 
1782369
 
87d67d4
 
1782369
 
 
 
 
87d67d4
 
1782369
 
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
 
 
 
87d67d4
 
1782369
 
87d67d4
 
1782369
 
 
87d67d4
 
1782369
 
 
 
 
 
87d67d4
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
 
87d67d4
1782369
 
 
 
 
 
 
 
 
731ef3e
1782369
87d67d4
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
 
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
1782369
 
 
87d67d4
 
1782369
 
 
 
 
87d67d4
 
1782369
 
 
 
87d67d4
 
1782369
 
 
 
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
 
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
1782369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
731ef3e
1782369
 
 
 
 
87d67d4
 
1782369
 
 
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
 
 
87d67d4
 
1782369
87d67d4
 
1782369
 
 
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
 
 
 
87d67d4
 
1782369
 
 
 
 
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
 
 
 
 
 
 
 
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
 
87d67d4
 
1782369
 
 
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
731ef3e
1782369
 
 
 
87d67d4
1782369
 
 
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
 
87d67d4
 
1782369
 
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
 
87d67d4
 
1782369
 
 
 
 
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
 
87d67d4
 
1782369
 
 
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
 
731ef3e
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
 
1782369
 
 
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
 
 
 
 
 
 
 
87d67d4
 
1782369
 
87d67d4
 
1782369
87d67d4
1782369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
 
 
 
 
 
 
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
 
 
 
 
 
 
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
 
 
 
 
 
 
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
1782369
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782369
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
 
 
 
1782369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
 
 
 
 
 
1782369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
 
 
 
1782369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782369
 
 
 
87d67d4
1782369
 
 
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782369
 
 
87d67d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
---
base_model: Snowflake/snowflake-arctic-embed-m
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1490
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What is the error message related to the blob-container for the
    azure-generic subscription in ZenML?
  sentences:
  - '─────────────────────────────────────────────────┨┃   🇦 azure-generic    │ ZenML
    Subscription                                                                                                              ┃


    ┠───────────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┨


    ┃   📦 blob-container   │ 💥 error: connector authorization failure: the ''access-token''
    authentication method is not supported for blob storage resources ┃


    ┠───────────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┨


    ┃ 🌀 kubernetes-cluster │ demo-zenml-demos/demo-zenml-terraform-cluster                                                                                   ┃


    ┠───────────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┨


    ┃  🐳 docker-registry   │ demozenmlcontainerregistry.azurecr.io                                                                                           ┃


    ┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛


    zenml service-connector describe azure-session-token


    Example Command Output


    Service connector ''azure-session-token'' of type ''azure'' with id ''94d64103-9902-4aa5-8ce4-877061af89af''
    is owned by user ''default'' and is ''private''.


    ''azure-session-token'' azure Service Connector Details


    ┏━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓


    ┃ PROPERTY         │ VALUE                                                                          ┃


    ┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨


    ┃ ID               │ 94d64103-9902-4aa5-8ce4-877061af89af                                           ┃'
  - '🪆Use the Model Control Plane


    A Model is simply an entity that groups pipelines, artifacts, metadata, and other
    crucial business data into a unified entity. A ZenML Model is a concept that more
    broadly encapsulates your ML products business logic. You may even think of a
    ZenML Model as a "project" or a "workspace"


    Please note that one of the most common artifacts that is associated with a Model
    in ZenML is the so-called technical model, which is the actually model file/files
    that holds the weight and parameters of a machine learning training result. However,
    this is not the only artifact that is relevant; artifacts such as the training
    data and the predictions this model produces in production are also linked inside
    a ZenML Model.


    Models are first-class citizens in ZenML and as such viewing and using them is
    unified and centralized in the ZenML API, client as well as on the ZenML Pro dashboard.


    A Model captures lineage information and more. Within a Model, different Model
    versions can be staged. For example, you can rely on your predictions at a specific
    stage, like Production, and decide whether the Model version should be promoted
    based on your business rules during training. Plus, accessing data from other
    Models and their versions is just as simple.


    The Model Control Plane is how you manage your models through this unified interface.
    It allows you to combine the logic of your pipelines, artifacts and crucial business
    data along with the actual ''technical model''.


    To see an end-to-end example, please refer to the starter guide.


    PreviousDisabling visualizations


    NextRegistering a Model


    Last updated 12 days ago'
  - 'turns:


    The Docker image repo digest or name.


    """This is a slimmed-down version of the base implementation which aims to highlight
    the abstraction layer. In order to see the full implementation and get the complete
    docstrings, please check the source code on GitHub .


    Build your own custom image builder


    If you want to create your own custom flavor for an image builder, you can follow
    the following steps:


    Create a class that inherits from the BaseImageBuilder class and implement the
    abstract build method. This method should use the given build context and build
    a Docker image with it. If additionally a container registry is passed to the
    build method, the image builder is also responsible for pushing the image there.


    If you need to provide any configuration, create a class that inherits from the
    BaseImageBuilderConfig class and adds your configuration parameters.


    Bring both the implementation and the configuration together by inheriting from
    the BaseImageBuilderFlavor class. Make sure that you give a name to the flavor
    through its abstract property.


    Once you are done with the implementation, you can register it through the CLI.
    Please ensure you point to the flavor class via dot notation:


    zenml image-builder flavor register <path.to.MyImageBuilderFlavor>


    For example, if your flavor class MyImageBuilderFlavor is defined in flavors/my_flavor.py,
    you''d register it by doing:


    zenml image-builder flavor register flavors.my_flavor.MyImageBuilderFlavor


    ZenML resolves the flavor class by taking the path where you initialized zenml
    (via zenml init) as the starting point of resolution. Therefore, please ensure
    you follow the best practice of initializing zenml at the root of your repository.


    If ZenML does not find an initialized ZenML repository in any parent directory,
    it will default to the current working directory, but usually it''s better to
    not have to rely on this mechanism, and initialize zenml at the root.


    Afterward, you should see the new flavor in the list of available flavors:'
- source_sentence: Where can I find more information on configuring the Spark step
    operator in ZenML?
  sentences:
  - 'upplied a custom value while creating the cluster.Run the following command.

    aws eks update-kubeconfig --name <NAME> --region <REGION>


    Get the name of the deployed cluster.


    zenml stack recipe output gke-cluster-name\


    Figure out the region that the cluster is deployed to. By default, the region
    is set to europe-west1, which you should use in the next step if you haven''t
    supplied a custom value while creating the cluster.\


    Figure out the project that the cluster is deployed to. You must have passed in
    a project ID while creating a GCP resource for the first time.\


    Run the following command.

    gcloud container clusters get-credentials <NAME> --region <REGION> --project <PROJECT_ID>


    You may already have your kubectl client configured with your cluster. Check by
    running kubectl get nodes before proceeding.


    Get the name of the deployed cluster.


    zenml stack recipe output k3d-cluster-name\


    Set the KUBECONFIG env variable to the kubeconfig file from the cluster.


    export KUBECONFIG=$(k3d kubeconfig get <NAME>)\


    You can now use the kubectl client to talk to the cluster.


    Stack Recipe Deploy


    The steps for the stack recipe case should be the same as the ones listed above.
    The only difference that you need to take into account is the name of the outputs
    that contain your cluster name and the default regions.


    Each recipe might have its own values and here''s how you can ascertain those
    values.


    For the cluster name, go into the outputs.tf file in the root directory and search
    for the output that exposes the cluster name.


    For the region, check out the variables.tf or the locals.tf file for the default
    value assigned to it.


    PreviousTroubleshoot the deployed server


    NextCustom secret stores


    Last updated 10 months ago'
  - 'ettings to specify AzureML step operator settings.Difference between stack component
    settings at registration-time vs real-time


    For stack-component-specific settings, you might be wondering what the difference
    is between these and the configuration passed in while doing zenml stack-component
    register <NAME> --config1=configvalue --config2=configvalue, etc. The answer is
    that the configuration passed in at registration time is static and fixed throughout
    all pipeline runs, while the settings can change.


    A good example of this is the MLflow Experiment Tracker, where configuration which
    remains static such as the tracking_url is sent through at registration time,
    while runtime configuration such as the experiment_name (which might change every
    pipeline run) is sent through as runtime settings.


    Even though settings can be overridden at runtime, you can also specify default
    values for settings while configuring a stack component. For example, you could
    set a default value for the nested setting of your MLflow experiment tracker:
    zenml experiment-tracker register <NAME> --flavor=mlflow --nested=True


    This means that all pipelines that run using this experiment tracker use nested
    MLflow runs unless overridden by specifying settings for the pipeline at runtime.


    Using the right key for Stack-component-specific settings


    When specifying stack-component-specific settings, a key needs to be passed. This
    key should always correspond to the pattern: <COMPONENT_CATEGORY>.<COMPONENT_FLAVOR>


    For example, the SagemakerStepOperator supports passing in estimator_args. The
    way to specify this would be to use the key step_operator.sagemaker


    @step(step_operator="nameofstepoperator", settings= {"step_operator.sagemaker":
    {"estimator_args": {"instance_type": "m7g.medium"}}})


    def my_step():


    ...


    # Using the class


    @step(step_operator="nameofstepoperator", settings= {"step_operator.sagemaker":
    SagemakerStepOperatorSettings(instance_type="m7g.medium")})


    def my_step():


    ...


    or in YAML:


    steps:


    my_step:'
  - '_operator


    @step(step_operator=step_operator.name)def step_on_spark(...) -> ...:


    ...


    Additional configuration


    For additional configuration of the Spark step operator, you can pass SparkStepOperatorSettings
    when defining or running your pipeline. Check out the SDK docs for a full list
    of available attributes and this docs page for more information on how to specify
    settings.


    PreviousAzureML


    NextDevelop a Custom Step Operator


    Last updated 19 days ago'
- source_sentence: How can I register an Azure Service Connector for an ACR registry
    in ZenML using the CLI?
  sentences:
  - 'ure Container Registry to the remote ACR registry.To set up the Azure Container
    Registry to authenticate to Azure and access an ACR registry, it is recommended
    to leverage the many features provided by the Azure Service Connector such as
    auto-configuration, local login, best security practices regarding long-lived
    credentials and reusing the same credentials across multiple stack components.


    If you don''t already have an Azure Service Connector configured in your ZenML
    deployment, you can register one using the interactive CLI command. You have the
    option to configure an Azure Service Connector that can be used to access a ACR
    registry or even more than one type of Azure resource:


    zenml service-connector register --type azure -i


    A non-interactive CLI example that uses Azure Service Principal credentials to
    configure an Azure Service Connector targeting a single ACR registry is:


    zenml service-connector register <CONNECTOR_NAME> --type azure --auth-method service-principal
    --tenant_id=<AZURE_TENANT_ID> --client_id=<AZURE_CLIENT_ID> --client_secret=<AZURE_CLIENT_SECRET>
    --resource-type docker-registry --resource-id <REGISTRY_URI>


    Example Command Output


    $ zenml service-connector register azure-demo --type azure --auth-method service-principal
    --tenant_id=a79f3633-8f45-4a74-a42e-68871c17b7fb --client_id=8926254a-8c3f-430a-a2fd-bdab234d491e
    --client_secret=AzureSuperSecret --resource-type docker-registry --resource-id
    demozenmlcontainerregistry.azurecr.io


    ⠸ Registering service connector ''azure-demo''...


    Successfully registered service connector `azure-demo` with access to the following
    resources:


    ┏━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓


    ┃   RESOURCE TYPE    │ RESOURCE NAMES                        ┃


    ┠────────────────────┼───────────────────────────────────────┨


    ┃ 🐳 docker-registry │ demozenmlcontainerregistry.azurecr.io ┃


    ┗━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛'
  - 'Default Container Registry


    Storing container images locally.


    The Default container registry is a container registry flavor that comes built-in
    with ZenML and allows container registry URIs of any format.


    When to use it


    You should use the Default container registry if you want to use a local container
    registry or when using a remote container registry that is not covered by other
    container registry flavors.


    Local registry URI format


    To specify a URI for a local container registry, use the following format:


    localhost:<PORT>


    # Examples:


    localhost:5000


    localhost:8000


    localhost:9999


    How to use it


    To use the Default container registry, we need:


    Docker installed and running.


    The registry URI. If you''re using a local container registry, check out


    the previous section on the URI format.


    We can then register the container registry and use it in our active stack:


    zenml container-registry register <NAME> \


    --flavor=default \


    --uri=<REGISTRY_URI>


    # Add the container registry to the active stack


    zenml stack update -c <NAME>


    You may also need to set up authentication required to log in to the container
    registry.


    Authentication Methods


    If you are using a private container registry, you will need to configure some
    form of authentication to login to the registry. If you''re looking for a quick
    way to get started locally, you can use the Local Authentication method. However,
    the recommended way to authenticate to a remote private container registry is
    through a Docker Service Connector.


    If your target private container registry comes from a cloud provider like AWS,
    GCP or Azure, you should use the container registry flavor targeted at that cloud
    provider. For example, if you''re using AWS, you should use the AWS Container
    Registry flavor. These cloud provider flavors also use specialized cloud provider
    Service Connectors to authenticate to the container registry.'
  - 'egister gcp-demo-multi --type gcp --auto-configureExample Command Output


    ```text


    Successfully registered service connector `gcp-demo-multi` with access to the
    following resources:


    ┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓


    ┃     RESOURCE TYPE     │ RESOURCE NAMES                                  ┃


    ┠───────────────────────┼─────────────────────────────────────────────────┨


    ┃    🔵 gcp-generic     │ zenml-core                                      ┃


    ┠───────────────────────┼─────────────────────────────────────────────────┨


    ┃     📦 gcs-bucket     │ gs://zenml-bucket-sl                            ┃


    ┃                       │ gs://zenml-core.appspot.com                     ┃


    ┃                       │ gs://zenml-core_cloudbuild                      ┃


    ┃                       │ gs://zenml-datasets                             ┃


    ┠───────────────────────┼─────────────────────────────────────────────────┨


    ┃ 🌀 kubernetes-cluster │ zenml-test-cluster                              ┃


    ┠───────────────────────┼─────────────────────────────────────────────────┨


    ┃  🐳 docker-registry   │ gcr.io/zenml-core                               ┃


    ┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛


    ```


    **NOTE**: from this point forward, we don''t need the local GCP CLI credentials
    or the local GCP CLI at all. The steps that follow can be run on any machine regardless
    of whether it has been configured and authorized to access the GCP project.


    4. find out which GCS buckets, GCR registries, and GKE Kubernetes clusters we
    can gain access to. We''ll use this information to configure the Stack Components
    in our minimal GCP stack: a GCS Artifact Store, a Kubernetes Orchestrator, and
    a GCP Container Registry.


    ```sh


    zenml service-connector list-resources --resource-type gcs-bucket


    ```


    Example Command Output


    ```text


    The following ''gcs-bucket'' resources can be accessed by service connectors configured
    in your workspace:'
- source_sentence: What resources does the `gcp-demo-multi` service connector have
    access to after registration?
  sentences:
  - 'Find out which configuration was used for a run


    Sometimes you might want to extract the used configuration from a pipeline that
    has already run. You can do this simply by loading the pipeline run and accessing
    its config attribute.


    from zenml.client import Client


    pipeline_run = Client().get_pipeline_run("<PIPELINE_RUN_NAME>")


    configuration = pipeline_run.config


    PreviousConfiguration hierarchy


    NextAutogenerate a template yaml file


    Last updated 15 days ago'
  - 'onfig class and add your configuration parameters.Bring both the implementation
    and the configuration together by inheriting from the BaseModelDeployerFlavor
    class. Make sure that you give a name to the flavor through its abstract property.


    Create a service class that inherits from the BaseService class and implements
    the abstract methods. This class will be used to represent the deployed model
    server in ZenML.


    Once you are done with the implementation, you can register it through the CLI.
    Please ensure you point to the flavor class via dot notation:


    zenml model-deployer flavor register <path.to.MyModelDeployerFlavor>


    For example, if your flavor class MyModelDeployerFlavor is defined in flavors/my_flavor.py,
    you''d register it by doing:


    zenml model-deployer flavor register flavors.my_flavor.MyModelDeployerFlavor


    ZenML resolves the flavor class by taking the path where you initialized zenml
    (via zenml init) as the starting point of resolution. Therefore, please ensure
    you follow the best practice of initializing zenml at the root of your repository.


    If ZenML does not find an initialized ZenML repository in any parent directory,
    it will default to the current working directory, but usually, it''s better to
    not have to rely on this mechanism and initialize zenml at the root.


    Afterward, you should see the new flavor in the list of available flavors:


    zenml model-deployer flavor list


    It is important to draw attention to when and how these base abstractions are
    coming into play in a ZenML workflow.


    The CustomModelDeployerFlavor class is imported and utilized upon the creation
    of the custom flavor through the CLI.


    The CustomModelDeployerConfig class is imported when someone tries to register/update
    a stack component with this custom flavor. Especially, during the registration
    process of the stack component, the config will be used to validate the values
    given by the user. As Config objects are inherently pydantic objects, you can
    also add your own custom validators here.'
  - 'egister gcp-demo-multi --type gcp --auto-configureExample Command Output


    ```text


    Successfully registered service connector `gcp-demo-multi` with access to the
    following resources:


    ┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓


    ┃     RESOURCE TYPE     │ RESOURCE NAMES                                  ┃


    ┠───────────────────────┼─────────────────────────────────────────────────┨


    ┃    🔵 gcp-generic     │ zenml-core                                      ┃


    ┠───────────────────────┼─────────────────────────────────────────────────┨


    ┃     📦 gcs-bucket     │ gs://zenml-bucket-sl                            ┃


    ┃                       │ gs://zenml-core.appspot.com                     ┃


    ┃                       │ gs://zenml-core_cloudbuild                      ┃


    ┃                       │ gs://zenml-datasets                             ┃


    ┠───────────────────────┼─────────────────────────────────────────────────┨


    ┃ 🌀 kubernetes-cluster │ zenml-test-cluster                              ┃


    ┠───────────────────────┼─────────────────────────────────────────────────┨


    ┃  🐳 docker-registry   │ gcr.io/zenml-core                               ┃


    ┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛


    ```


    **NOTE**: from this point forward, we don''t need the local GCP CLI credentials
    or the local GCP CLI at all. The steps that follow can be run on any machine regardless
    of whether it has been configured and authorized to access the GCP project.


    4. find out which GCS buckets, GCR registries, and GKE Kubernetes clusters we
    can gain access to. We''ll use this information to configure the Stack Components
    in our minimal GCP stack: a GCS Artifact Store, a Kubernetes Orchestrator, and
    a GCP Container Registry.


    ```sh


    zenml service-connector list-resources --resource-type gcs-bucket


    ```


    Example Command Output


    ```text


    The following ''gcs-bucket'' resources can be accessed by service connectors configured
    in your workspace:'
- source_sentence: What is the result of executing a Deepchecks test suite in ZenML?
  sentences:
  - 'urns:


    Deepchecks test suite execution result


    """# validation pre-processing (e.g. dataset preparation) can take place here


    data_validator = DeepchecksDataValidator.get_active_data_validator()


    suite = data_validator.data_validation(


    dataset=dataset,


    check_list=[


    DeepchecksDataIntegrityCheck.TABULAR_OUTLIER_SAMPLE_DETECTION,


    DeepchecksDataIntegrityCheck.TABULAR_STRING_LENGTH_OUT_OF_BOUNDS,


    ],


    # validation post-processing (e.g. interpret results, take actions) can happen
    here


    return suite


    The arguments that the Deepchecks Data Validator methods can take in are the same
    as those used for the Deepchecks standard steps.


    Have a look at the complete list of methods and parameters available in the DeepchecksDataValidator
    API in the SDK docs.


    Call Deepchecks directly


    You can use the Deepchecks library directly in your custom pipeline steps, and
    only leverage ZenML''s capability of serializing, versioning and storing the SuiteResult
    objects in its Artifact Store, e.g.:


    import pandas as pd


    import deepchecks.tabular.checks as tabular_checks


    from deepchecks.core.suite import SuiteResult


    from deepchecks.tabular import Suite


    from deepchecks.tabular import Dataset


    from zenml import step


    @step


    def data_integrity_check(


    dataset: pd.DataFrame,


    ) -> SuiteResult:


    """Custom data integrity check step with Deepchecks


    Args:


    dataset: a Pandas DataFrame


    Returns:


    Deepchecks test suite execution result


    """


    # validation pre-processing (e.g. dataset preparation) can take place here


    train_dataset = Dataset(


    dataset,


    label=''class'',


    cat_features=[''country'', ''state'']


    suite = Suite(name="custom")


    check = tabular_checks.OutlierSampleDetection(


    nearest_neighbors_percent=0.01,


    extent_parameter=3,


    check.add_condition_outlier_ratio_less_or_equal(


    max_outliers_ratio=0.007,


    outlier_score_threshold=0.5,


    suite.add(check)


    check = tabular_checks.StringLengthOutOfBounds(


    num_percentiles=1000,


    min_unique_values=3,


    check.add_condition_number_of_outliers_less_or_equal(


    max_outliers=3,'
  - 'ervice-principal


    ```


    Example Command Output


    ```Successfully connected orchestrator `aks-demo-cluster` to the following resources:


    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓


    ┃             CONNECTOR ID             │ CONNECTOR NAME          │ CONNECTOR TYPE
    │ RESOURCE TYPE         │ RESOURCE NAMES                                ┃


    ┠──────────────────────────────────────┼─────────────────────────┼────────────────┼───────────────────────┼───────────────────────────────────────────────┨


    ┃ f2316191-d20b-4348-a68b-f5e347862196 │ azure-service-principal │ 🇦 azure       │
    🌀 kubernetes-cluster │ demo-zenml-demos/demo-zenml-terraform-cluster ┃


    ┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛


    ```


    Register and connect an Azure Container Registry Stack Component to an ACR container
    registry:Copyzenml container-registry register acr-demo-registry --flavor azure
    --uri=demozenmlcontainerregistry.azurecr.io


    Example Command Output


    ```


    Successfully registered container_registry `acr-demo-registry`.


    ```


    ```sh


    zenml container-registry connect acr-demo-registry --connector azure-service-principal


    ```


    Example Command Output


    ```


    Successfully connected container registry `acr-demo-registry` to the following
    resources:


    ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓


    ┃             CONNECTOR ID             │ CONNECTOR NAME          │ CONNECTOR TYPE
    │ RESOURCE TYPE      │ RESOURCE NAMES                        ┃


    ┠──────────────────────────────────────┼─────────────────────────┼────────────────┼────────────────────┼───────────────────────────────────────┨


    ┃ f2316191-d20b-4348-a68b-f5e347862196 │ azure-service-principal │ 🇦 azure       │
    🐳 docker-registry │ demozenmlcontainerregistry.azurecr.io ┃'
  - 'r │ zenhacks-cluster                             ┃┠───────────────────────┼──────────────────────────────────────────────┨


    ┃  🐳 docker-registry   │ 715803424590.dkr.ecr.us-east-1.amazonaws.com ┃


    ┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛


    The Service Connector configuration shows long-lived credentials were lifted from
    the local environment and the AWS Session Token authentication method was configured:


    zenml service-connector describe aws-session-token


    Example Command Output


    Service connector ''aws-session-token'' of type ''aws'' with id ''3ae3e595-5cbc-446e-be64-e54e854e0e3f''
    is owned by user ''default'' and is ''private''.


    ''aws-session-token'' aws Service Connector Details


    ┏━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓


    ┃ PROPERTY         │ VALUE                                                                   ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ ID               │ c0f8e857-47f9-418b-a60f-c3b03023da54                                    ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ NAME             │ aws-session-token                                                       ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ TYPE             │ 🔶 aws                                                                  ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ AUTH METHOD      │ session-token                                                           ┃


    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨


    ┃ RESOURCE TYPES   │ 🔶 aws-generic, 📦 s3-bucket, 🌀 kubernetes-cluster, 🐳 docker-registry



    ┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨'
model-index:
- name: zenml/finetuned-snowflake-arctic-embed-m
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 384
      type: dim_384
    metrics:
    - type: cosine_accuracy@1
      value: 0.3614457831325301
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6987951807228916
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7530120481927711
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8554216867469879
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3614457831325301
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.23293172690763048
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15060240963855417
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08554216867469877
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3614457831325301
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6987951807228916
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7530120481927711
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8554216867469879
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.6194049451779184
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.5427878179384205
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5472907234693755
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.3433734939759036
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6807228915662651
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7650602409638554
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8373493975903614
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3433734939759036
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2269076305220883
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.15301204819277103
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08373493975903612
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3433734939759036
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6807228915662651
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7650602409638554
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8373493975903614
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.602546157610675
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.525891661885638
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.5310273317942533
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.3132530120481928
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.6265060240963856
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7168674698795181
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7891566265060241
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3132530120481928
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.20883534136546178
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1433734939759036
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0789156626506024
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3132530120481928
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.6265060240963856
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7168674698795181
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7891566265060241
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5630057581169484
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4893144004589788
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4960510164414996
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.25903614457831325
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5120481927710844
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6325301204819277
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7168674698795181
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.25903614457831325
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.17068273092369476
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12650602409638553
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07168674698795179
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.25903614457831325
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5120481927710844
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6325301204819277
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7168674698795181
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.48618223058871674
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.41233027347485207
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.42094598177412385
      name: Cosine Map@100
---

# zenml/finetuned-snowflake-arctic-embed-m

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision 71bc94c8f9ea1e54fba11167004205a65e5da2cc -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("zenml/finetuned-snowflake-arctic-embed-m")
# Run inference
sentences = [
    'What is the result of executing a Deepchecks test suite in ZenML?',
    'urns:\n\nDeepchecks test suite execution result\n\n"""# validation pre-processing (e.g. dataset preparation) can take place here\n\ndata_validator = DeepchecksDataValidator.get_active_data_validator()\n\nsuite = data_validator.data_validation(\n\ndataset=dataset,\n\ncheck_list=[\n\nDeepchecksDataIntegrityCheck.TABULAR_OUTLIER_SAMPLE_DETECTION,\n\nDeepchecksDataIntegrityCheck.TABULAR_STRING_LENGTH_OUT_OF_BOUNDS,\n\n],\n\n# validation post-processing (e.g. interpret results, take actions) can happen here\n\nreturn suite\n\nThe arguments that the Deepchecks Data Validator methods can take in are the same as those used for the Deepchecks standard steps.\n\nHave a look at the complete list of methods and parameters available in the DeepchecksDataValidator API in the SDK docs.\n\nCall Deepchecks directly\n\nYou can use the Deepchecks library directly in your custom pipeline steps, and only leverage ZenML\'s capability of serializing, versioning and storing the SuiteResult objects in its Artifact Store, e.g.:\n\nimport pandas as pd\n\nimport deepchecks.tabular.checks as tabular_checks\n\nfrom deepchecks.core.suite import SuiteResult\n\nfrom deepchecks.tabular import Suite\n\nfrom deepchecks.tabular import Dataset\n\nfrom zenml import step\n\n@step\n\ndef data_integrity_check(\n\ndataset: pd.DataFrame,\n\n) -> SuiteResult:\n\n"""Custom data integrity check step with Deepchecks\n\nArgs:\n\ndataset: a Pandas DataFrame\n\nReturns:\n\nDeepchecks test suite execution result\n\n"""\n\n# validation pre-processing (e.g. dataset preparation) can take place here\n\ntrain_dataset = Dataset(\n\ndataset,\n\nlabel=\'class\',\n\ncat_features=[\'country\', \'state\']\n\nsuite = Suite(name="custom")\n\ncheck = tabular_checks.OutlierSampleDetection(\n\nnearest_neighbors_percent=0.01,\n\nextent_parameter=3,\n\ncheck.add_condition_outlier_ratio_less_or_equal(\n\nmax_outliers_ratio=0.007,\n\noutlier_score_threshold=0.5,\n\nsuite.add(check)\n\ncheck = tabular_checks.StringLengthOutOfBounds(\n\nnum_percentiles=1000,\n\nmin_unique_values=3,\n\ncheck.add_condition_number_of_outliers_less_or_equal(\n\nmax_outliers=3,',
    "r │ zenhacks-cluster                             ┃┠───────────────────────┼──────────────────────────────────────────────┨\n\n┃  🐳 docker-registry   │ 715803424590.dkr.ecr.us-east-1.amazonaws.com ┃\n\n┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛\n\nThe Service Connector configuration shows long-lived credentials were lifted from the local environment and the AWS Session Token authentication method was configured:\n\nzenml service-connector describe aws-session-token\n\nExample Command Output\n\nService connector 'aws-session-token' of type 'aws' with id '3ae3e595-5cbc-446e-be64-e54e854e0e3f' is owned by user 'default' and is 'private'.\n\n'aws-session-token' aws Service Connector Details\n\n┏━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n\n┃ PROPERTY         │ VALUE                                                                   ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨\n\n┃ ID               │ c0f8e857-47f9-418b-a60f-c3b03023da54                                    ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨\n\n┃ NAME             │ aws-session-token                                                       ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨\n\n┃ TYPE             │ 🔶 aws                                                                  ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨\n\n┃ AUTH METHOD      │ session-token                                                           ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨\n\n┃ RESOURCE TYPES   │ 🔶 aws-generic, 📦 s3-bucket, 🌀 kubernetes-cluster, 🐳 docker-registry ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3614     |
| cosine_accuracy@3   | 0.6988     |
| cosine_accuracy@5   | 0.753      |
| cosine_accuracy@10  | 0.8554     |
| cosine_precision@1  | 0.3614     |
| cosine_precision@3  | 0.2329     |
| cosine_precision@5  | 0.1506     |
| cosine_precision@10 | 0.0855     |
| cosine_recall@1     | 0.3614     |
| cosine_recall@3     | 0.6988     |
| cosine_recall@5     | 0.753      |
| cosine_recall@10    | 0.8554     |
| cosine_ndcg@10      | 0.6194     |
| cosine_mrr@10       | 0.5428     |
| **cosine_map@100**  | **0.5473** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.3434    |
| cosine_accuracy@3   | 0.6807    |
| cosine_accuracy@5   | 0.7651    |
| cosine_accuracy@10  | 0.8373    |
| cosine_precision@1  | 0.3434    |
| cosine_precision@3  | 0.2269    |
| cosine_precision@5  | 0.153     |
| cosine_precision@10 | 0.0837    |
| cosine_recall@1     | 0.3434    |
| cosine_recall@3     | 0.6807    |
| cosine_recall@5     | 0.7651    |
| cosine_recall@10    | 0.8373    |
| cosine_ndcg@10      | 0.6025    |
| cosine_mrr@10       | 0.5259    |
| **cosine_map@100**  | **0.531** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3133     |
| cosine_accuracy@3   | 0.6265     |
| cosine_accuracy@5   | 0.7169     |
| cosine_accuracy@10  | 0.7892     |
| cosine_precision@1  | 0.3133     |
| cosine_precision@3  | 0.2088     |
| cosine_precision@5  | 0.1434     |
| cosine_precision@10 | 0.0789     |
| cosine_recall@1     | 0.3133     |
| cosine_recall@3     | 0.6265     |
| cosine_recall@5     | 0.7169     |
| cosine_recall@10    | 0.7892     |
| cosine_ndcg@10      | 0.563      |
| cosine_mrr@10       | 0.4893     |
| **cosine_map@100**  | **0.4961** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.259      |
| cosine_accuracy@3   | 0.512      |
| cosine_accuracy@5   | 0.6325     |
| cosine_accuracy@10  | 0.7169     |
| cosine_precision@1  | 0.259      |
| cosine_precision@3  | 0.1707     |
| cosine_precision@5  | 0.1265     |
| cosine_precision@10 | 0.0717     |
| cosine_recall@1     | 0.259      |
| cosine_recall@3     | 0.512      |
| cosine_recall@5     | 0.6325     |
| cosine_recall@10    | 0.7169     |
| cosine_ndcg@10      | 0.4862     |
| cosine_mrr@10       | 0.4123     |
| **cosine_map@100**  | **0.4209** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,490 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                          | anchor                                                                               |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 9 tokens</li><li>mean: 21.15 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 373.39 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | positive                                                                                                                               | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
  |:---------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>How do I configure the IAM role for the ZenML AWS CLI profile?</code>                                                            | <code>ication method with a configured IAM role instead.The connector needs to be configured with the IAM role to be assumed accompanied by an AWS secret key associated with an IAM user or an STS token associated with another IAM role. The IAM user or IAM role must have permission to assume the target IAM role. The connector will generate temporary STS tokens upon request by calling the AssumeRole STS API.<br><br>The best practice implemented with this authentication scheme is to keep the set of permissions associated with the primary IAM user or IAM role down to the bare minimum and grant permissions to the privilege-bearing IAM role instead.<br><br>An AWS region is required and the connector may only be used to access AWS resources in the specified region.<br><br>One or more optional IAM session policies may also be configured to further restrict the permissions of the generated STS tokens. If not specified, IAM session policies are automatically configured for the generated STS tokens to restrict them to the minimum set of permissions required to access the target resource. Refer to the documentation for each supported Resource Type for the complete list of AWS permissions automatically granted to the generated STS tokens.<br><br>The default expiration period for generated STS tokens is 1 hour with a minimum of 15 minutes up to the maximum session duration setting configured for the IAM role (default is 1 hour). If you need longer-lived tokens, you can configure the IAM role to use a higher maximum expiration value (up to 12 hours) or use the AWS Federation Token or AWS Session Token authentication methods.<br><br>For more information on IAM roles and the AssumeRole AWS API, see the official AWS documentation on the subject.<br><br>For more information about the difference between this method and the AWS Federation Token authentication method, consult this AWS documentation page.<br><br>The following assumes the local AWS CLI has a zenml AWS CLI profile already configured with an AWS Secret Key and an IAM role to be assumed:</code>                                                                                                                      |
  | <code>What command should be used to list all available alerter flavors after initializing ZenML at the root of the repository?</code> | <code>initializing zenml at the root of your repository.If ZenML does not find an initialized ZenML repository in any parent directory, it will default to the current working directory, but usually, it's better to not have to rely on this mechanism and initialize zenml at the root.<br><br>Afterward, you should see the new custom alerter flavor in the list of available alerter flavors:<br><br>zenml alerter flavor list<br><br>It is important to draw attention to when and how these abstractions are coming into play in a ZenML workflow.<br><br>The MyAlerterFlavor class is imported and utilized upon the creation of the custom flavor through the CLI.<br><br>The MyAlerterConfig class is imported when someone tries to register/update a stack component with the my_alerter flavor. Especially, during the registration process of the stack component, the config will be used to validate the values given by the user. As Config objects are inherently pydantic objects, you can also add your own custom validators here.<br><br>The MyAlerter only comes into play when the component is ultimately in use.<br><br>The design behind this interaction lets us separate the configuration of the flavor from its implementation. This way we can register flavors and components even when the major dependencies behind their implementation are not installed in our local setting (assuming the MyAlerterFlavor and the MyAlerterConfig are implemented in a different module/path than the actual MyAlerter).<br><br>PreviousSlack Alerter<br><br>NextImage Builders<br><br>Last updated 15 days ago</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  | <code>Where can I find the URL to the UI of a remote orchestrator for a pipeline run in ZenML?</code>                                  | <code>g, and cached.<br><br>status = run.status<br><br>ConfigurationThe pipeline_configuration is an object that contains all configurations of the pipeline and pipeline run, including the pipeline-level settings, which we will learn more about later:<br><br>pipeline_config = run.config<br><br>pipeline_settings = run.config.settings<br><br>Component-Specific metadata<br><br>Depending on the stack components you use, you might have additional component-specific metadata associated with your run, such as the URL to the UI of a remote orchestrator. You can access this component-specific metadata via the run_metadata attribute:<br><br>run_metadata = run.run_metadata<br><br># The following only works for runs on certain remote orchestrators<br><br>orchestrator_url = run_metadata["orchestrator_url"].value<br><br>## Steps<br><br>Within a given pipeline run you can now further zoom in on individual steps using the `steps` attribute:<br><br>```python<br><br># get all steps of a pipeline for a given run<br><br>steps = run.steps<br><br># get a specific step by its invocation ID<br><br>step = run.steps["first_step"]<br><br>If you're only calling each step once inside your pipeline, the invocation ID will be the same as the name of your step. For more complex pipelines, check out this page to learn more about the invocation ID.<br><br>Inspect pipeline runs with our VS Code extension<br><br>If you are using our VS Code extension, you can easily view your pipeline runs by opening the sidebar (click on the ZenML icon). You can then click on any particular pipeline run to see its status and some other metadata. If you want to delete a run, you can also do so from the same sidebar view.<br><br>Step information<br><br>Similar to the run, you can use the step object to access a variety of useful information:<br><br>The parameters used to run the step via step.config.parameters,<br><br>The step-level settings via step.config.settings,<br><br>Component-specific step metadata, such as the URL of an experiment tracker or model deployer, via step.run_metadata<br><br>See the StepRunResponse definition for a comprehensive list of available information.<br><br>Artifacts</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          384,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: True
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step  | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.6667     | 1     | 0.4215                 | 0.4509                 | 0.4878                 | 0.3203                |
| 2.0        | 3     | 0.4835                 | 0.5278                 | 0.5582                 | 0.4141                |
| **2.6667** | **4** | **0.4961**             | **0.531**              | **0.5473**             | **0.4209**            |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->