File size: 74,841 Bytes
87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 731ef3e 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 731ef3e 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 731ef3e 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 731ef3e 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 1782369 87d67d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 |
---
base_model: Snowflake/snowflake-arctic-embed-m
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1490
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What is the error message related to the blob-container for the
azure-generic subscription in ZenML?
sentences:
- '─────────────────────────────────────────────────┨┃ 🇦 azure-generic │ ZenML
Subscription ┃
┠───────────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┨
┃ 📦 blob-container │ 💥 error: connector authorization failure: the ''access-token''
authentication method is not supported for blob storage resources ┃
┠───────────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┨
┃ 🌀 kubernetes-cluster │ demo-zenml-demos/demo-zenml-terraform-cluster ┃
┠───────────────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┨
┃ 🐳 docker-registry │ demozenmlcontainerregistry.azurecr.io ┃
┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
zenml service-connector describe azure-session-token
Example Command Output
Service connector ''azure-session-token'' of type ''azure'' with id ''94d64103-9902-4aa5-8ce4-877061af89af''
is owned by user ''default'' and is ''private''.
''azure-session-token'' azure Service Connector Details
┏━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ PROPERTY │ VALUE ┃
┠──────────────────┼────────────────────────────────────────────────────────────────────────────────┨
┃ ID │ 94d64103-9902-4aa5-8ce4-877061af89af ┃'
- '🪆Use the Model Control Plane
A Model is simply an entity that groups pipelines, artifacts, metadata, and other
crucial business data into a unified entity. A ZenML Model is a concept that more
broadly encapsulates your ML products business logic. You may even think of a
ZenML Model as a "project" or a "workspace"
Please note that one of the most common artifacts that is associated with a Model
in ZenML is the so-called technical model, which is the actually model file/files
that holds the weight and parameters of a machine learning training result. However,
this is not the only artifact that is relevant; artifacts such as the training
data and the predictions this model produces in production are also linked inside
a ZenML Model.
Models are first-class citizens in ZenML and as such viewing and using them is
unified and centralized in the ZenML API, client as well as on the ZenML Pro dashboard.
A Model captures lineage information and more. Within a Model, different Model
versions can be staged. For example, you can rely on your predictions at a specific
stage, like Production, and decide whether the Model version should be promoted
based on your business rules during training. Plus, accessing data from other
Models and their versions is just as simple.
The Model Control Plane is how you manage your models through this unified interface.
It allows you to combine the logic of your pipelines, artifacts and crucial business
data along with the actual ''technical model''.
To see an end-to-end example, please refer to the starter guide.
PreviousDisabling visualizations
NextRegistering a Model
Last updated 12 days ago'
- 'turns:
The Docker image repo digest or name.
"""This is a slimmed-down version of the base implementation which aims to highlight
the abstraction layer. In order to see the full implementation and get the complete
docstrings, please check the source code on GitHub .
Build your own custom image builder
If you want to create your own custom flavor for an image builder, you can follow
the following steps:
Create a class that inherits from the BaseImageBuilder class and implement the
abstract build method. This method should use the given build context and build
a Docker image with it. If additionally a container registry is passed to the
build method, the image builder is also responsible for pushing the image there.
If you need to provide any configuration, create a class that inherits from the
BaseImageBuilderConfig class and adds your configuration parameters.
Bring both the implementation and the configuration together by inheriting from
the BaseImageBuilderFlavor class. Make sure that you give a name to the flavor
through its abstract property.
Once you are done with the implementation, you can register it through the CLI.
Please ensure you point to the flavor class via dot notation:
zenml image-builder flavor register <path.to.MyImageBuilderFlavor>
For example, if your flavor class MyImageBuilderFlavor is defined in flavors/my_flavor.py,
you''d register it by doing:
zenml image-builder flavor register flavors.my_flavor.MyImageBuilderFlavor
ZenML resolves the flavor class by taking the path where you initialized zenml
(via zenml init) as the starting point of resolution. Therefore, please ensure
you follow the best practice of initializing zenml at the root of your repository.
If ZenML does not find an initialized ZenML repository in any parent directory,
it will default to the current working directory, but usually it''s better to
not have to rely on this mechanism, and initialize zenml at the root.
Afterward, you should see the new flavor in the list of available flavors:'
- source_sentence: Where can I find more information on configuring the Spark step
operator in ZenML?
sentences:
- 'upplied a custom value while creating the cluster.Run the following command.
aws eks update-kubeconfig --name <NAME> --region <REGION>
Get the name of the deployed cluster.
zenml stack recipe output gke-cluster-name\
Figure out the region that the cluster is deployed to. By default, the region
is set to europe-west1, which you should use in the next step if you haven''t
supplied a custom value while creating the cluster.\
Figure out the project that the cluster is deployed to. You must have passed in
a project ID while creating a GCP resource for the first time.\
Run the following command.
gcloud container clusters get-credentials <NAME> --region <REGION> --project <PROJECT_ID>
You may already have your kubectl client configured with your cluster. Check by
running kubectl get nodes before proceeding.
Get the name of the deployed cluster.
zenml stack recipe output k3d-cluster-name\
Set the KUBECONFIG env variable to the kubeconfig file from the cluster.
export KUBECONFIG=$(k3d kubeconfig get <NAME>)\
You can now use the kubectl client to talk to the cluster.
Stack Recipe Deploy
The steps for the stack recipe case should be the same as the ones listed above.
The only difference that you need to take into account is the name of the outputs
that contain your cluster name and the default regions.
Each recipe might have its own values and here''s how you can ascertain those
values.
For the cluster name, go into the outputs.tf file in the root directory and search
for the output that exposes the cluster name.
For the region, check out the variables.tf or the locals.tf file for the default
value assigned to it.
PreviousTroubleshoot the deployed server
NextCustom secret stores
Last updated 10 months ago'
- 'ettings to specify AzureML step operator settings.Difference between stack component
settings at registration-time vs real-time
For stack-component-specific settings, you might be wondering what the difference
is between these and the configuration passed in while doing zenml stack-component
register <NAME> --config1=configvalue --config2=configvalue, etc. The answer is
that the configuration passed in at registration time is static and fixed throughout
all pipeline runs, while the settings can change.
A good example of this is the MLflow Experiment Tracker, where configuration which
remains static such as the tracking_url is sent through at registration time,
while runtime configuration such as the experiment_name (which might change every
pipeline run) is sent through as runtime settings.
Even though settings can be overridden at runtime, you can also specify default
values for settings while configuring a stack component. For example, you could
set a default value for the nested setting of your MLflow experiment tracker:
zenml experiment-tracker register <NAME> --flavor=mlflow --nested=True
This means that all pipelines that run using this experiment tracker use nested
MLflow runs unless overridden by specifying settings for the pipeline at runtime.
Using the right key for Stack-component-specific settings
When specifying stack-component-specific settings, a key needs to be passed. This
key should always correspond to the pattern: <COMPONENT_CATEGORY>.<COMPONENT_FLAVOR>
For example, the SagemakerStepOperator supports passing in estimator_args. The
way to specify this would be to use the key step_operator.sagemaker
@step(step_operator="nameofstepoperator", settings= {"step_operator.sagemaker":
{"estimator_args": {"instance_type": "m7g.medium"}}})
def my_step():
...
# Using the class
@step(step_operator="nameofstepoperator", settings= {"step_operator.sagemaker":
SagemakerStepOperatorSettings(instance_type="m7g.medium")})
def my_step():
...
or in YAML:
steps:
my_step:'
- '_operator
@step(step_operator=step_operator.name)def step_on_spark(...) -> ...:
...
Additional configuration
For additional configuration of the Spark step operator, you can pass SparkStepOperatorSettings
when defining or running your pipeline. Check out the SDK docs for a full list
of available attributes and this docs page for more information on how to specify
settings.
PreviousAzureML
NextDevelop a Custom Step Operator
Last updated 19 days ago'
- source_sentence: How can I register an Azure Service Connector for an ACR registry
in ZenML using the CLI?
sentences:
- 'ure Container Registry to the remote ACR registry.To set up the Azure Container
Registry to authenticate to Azure and access an ACR registry, it is recommended
to leverage the many features provided by the Azure Service Connector such as
auto-configuration, local login, best security practices regarding long-lived
credentials and reusing the same credentials across multiple stack components.
If you don''t already have an Azure Service Connector configured in your ZenML
deployment, you can register one using the interactive CLI command. You have the
option to configure an Azure Service Connector that can be used to access a ACR
registry or even more than one type of Azure resource:
zenml service-connector register --type azure -i
A non-interactive CLI example that uses Azure Service Principal credentials to
configure an Azure Service Connector targeting a single ACR registry is:
zenml service-connector register <CONNECTOR_NAME> --type azure --auth-method service-principal
--tenant_id=<AZURE_TENANT_ID> --client_id=<AZURE_CLIENT_ID> --client_secret=<AZURE_CLIENT_SECRET>
--resource-type docker-registry --resource-id <REGISTRY_URI>
Example Command Output
$ zenml service-connector register azure-demo --type azure --auth-method service-principal
--tenant_id=a79f3633-8f45-4a74-a42e-68871c17b7fb --client_id=8926254a-8c3f-430a-a2fd-bdab234d491e
--client_secret=AzureSuperSecret --resource-type docker-registry --resource-id
demozenmlcontainerregistry.azurecr.io
⠸ Registering service connector ''azure-demo''...
Successfully registered service connector `azure-demo` with access to the following
resources:
┏━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ RESOURCE TYPE │ RESOURCE NAMES ┃
┠────────────────────┼───────────────────────────────────────┨
┃ 🐳 docker-registry │ demozenmlcontainerregistry.azurecr.io ┃
┗━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛'
- 'Default Container Registry
Storing container images locally.
The Default container registry is a container registry flavor that comes built-in
with ZenML and allows container registry URIs of any format.
When to use it
You should use the Default container registry if you want to use a local container
registry or when using a remote container registry that is not covered by other
container registry flavors.
Local registry URI format
To specify a URI for a local container registry, use the following format:
localhost:<PORT>
# Examples:
localhost:5000
localhost:8000
localhost:9999
How to use it
To use the Default container registry, we need:
Docker installed and running.
The registry URI. If you''re using a local container registry, check out
the previous section on the URI format.
We can then register the container registry and use it in our active stack:
zenml container-registry register <NAME> \
--flavor=default \
--uri=<REGISTRY_URI>
# Add the container registry to the active stack
zenml stack update -c <NAME>
You may also need to set up authentication required to log in to the container
registry.
Authentication Methods
If you are using a private container registry, you will need to configure some
form of authentication to login to the registry. If you''re looking for a quick
way to get started locally, you can use the Local Authentication method. However,
the recommended way to authenticate to a remote private container registry is
through a Docker Service Connector.
If your target private container registry comes from a cloud provider like AWS,
GCP or Azure, you should use the container registry flavor targeted at that cloud
provider. For example, if you''re using AWS, you should use the AWS Container
Registry flavor. These cloud provider flavors also use specialized cloud provider
Service Connectors to authenticate to the container registry.'
- 'egister gcp-demo-multi --type gcp --auto-configureExample Command Output
```text
Successfully registered service connector `gcp-demo-multi` with access to the
following resources:
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ RESOURCE TYPE │ RESOURCE NAMES ┃
┠───────────────────────┼─────────────────────────────────────────────────┨
┃ 🔵 gcp-generic │ zenml-core ┃
┠───────────────────────┼─────────────────────────────────────────────────┨
┃ 📦 gcs-bucket │ gs://zenml-bucket-sl ┃
┃ │ gs://zenml-core.appspot.com ┃
┃ │ gs://zenml-core_cloudbuild ┃
┃ │ gs://zenml-datasets ┃
┠───────────────────────┼─────────────────────────────────────────────────┨
┃ 🌀 kubernetes-cluster │ zenml-test-cluster ┃
┠───────────────────────┼─────────────────────────────────────────────────┨
┃ 🐳 docker-registry │ gcr.io/zenml-core ┃
┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
```
**NOTE**: from this point forward, we don''t need the local GCP CLI credentials
or the local GCP CLI at all. The steps that follow can be run on any machine regardless
of whether it has been configured and authorized to access the GCP project.
4. find out which GCS buckets, GCR registries, and GKE Kubernetes clusters we
can gain access to. We''ll use this information to configure the Stack Components
in our minimal GCP stack: a GCS Artifact Store, a Kubernetes Orchestrator, and
a GCP Container Registry.
```sh
zenml service-connector list-resources --resource-type gcs-bucket
```
Example Command Output
```text
The following ''gcs-bucket'' resources can be accessed by service connectors configured
in your workspace:'
- source_sentence: What resources does the `gcp-demo-multi` service connector have
access to after registration?
sentences:
- 'Find out which configuration was used for a run
Sometimes you might want to extract the used configuration from a pipeline that
has already run. You can do this simply by loading the pipeline run and accessing
its config attribute.
from zenml.client import Client
pipeline_run = Client().get_pipeline_run("<PIPELINE_RUN_NAME>")
configuration = pipeline_run.config
PreviousConfiguration hierarchy
NextAutogenerate a template yaml file
Last updated 15 days ago'
- 'onfig class and add your configuration parameters.Bring both the implementation
and the configuration together by inheriting from the BaseModelDeployerFlavor
class. Make sure that you give a name to the flavor through its abstract property.
Create a service class that inherits from the BaseService class and implements
the abstract methods. This class will be used to represent the deployed model
server in ZenML.
Once you are done with the implementation, you can register it through the CLI.
Please ensure you point to the flavor class via dot notation:
zenml model-deployer flavor register <path.to.MyModelDeployerFlavor>
For example, if your flavor class MyModelDeployerFlavor is defined in flavors/my_flavor.py,
you''d register it by doing:
zenml model-deployer flavor register flavors.my_flavor.MyModelDeployerFlavor
ZenML resolves the flavor class by taking the path where you initialized zenml
(via zenml init) as the starting point of resolution. Therefore, please ensure
you follow the best practice of initializing zenml at the root of your repository.
If ZenML does not find an initialized ZenML repository in any parent directory,
it will default to the current working directory, but usually, it''s better to
not have to rely on this mechanism and initialize zenml at the root.
Afterward, you should see the new flavor in the list of available flavors:
zenml model-deployer flavor list
It is important to draw attention to when and how these base abstractions are
coming into play in a ZenML workflow.
The CustomModelDeployerFlavor class is imported and utilized upon the creation
of the custom flavor through the CLI.
The CustomModelDeployerConfig class is imported when someone tries to register/update
a stack component with this custom flavor. Especially, during the registration
process of the stack component, the config will be used to validate the values
given by the user. As Config objects are inherently pydantic objects, you can
also add your own custom validators here.'
- 'egister gcp-demo-multi --type gcp --auto-configureExample Command Output
```text
Successfully registered service connector `gcp-demo-multi` with access to the
following resources:
┏━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ RESOURCE TYPE │ RESOURCE NAMES ┃
┠───────────────────────┼─────────────────────────────────────────────────┨
┃ 🔵 gcp-generic │ zenml-core ┃
┠───────────────────────┼─────────────────────────────────────────────────┨
┃ 📦 gcs-bucket │ gs://zenml-bucket-sl ┃
┃ │ gs://zenml-core.appspot.com ┃
┃ │ gs://zenml-core_cloudbuild ┃
┃ │ gs://zenml-datasets ┃
┠───────────────────────┼─────────────────────────────────────────────────┨
┃ 🌀 kubernetes-cluster │ zenml-test-cluster ┃
┠───────────────────────┼─────────────────────────────────────────────────┨
┃ 🐳 docker-registry │ gcr.io/zenml-core ┃
┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
```
**NOTE**: from this point forward, we don''t need the local GCP CLI credentials
or the local GCP CLI at all. The steps that follow can be run on any machine regardless
of whether it has been configured and authorized to access the GCP project.
4. find out which GCS buckets, GCR registries, and GKE Kubernetes clusters we
can gain access to. We''ll use this information to configure the Stack Components
in our minimal GCP stack: a GCS Artifact Store, a Kubernetes Orchestrator, and
a GCP Container Registry.
```sh
zenml service-connector list-resources --resource-type gcs-bucket
```
Example Command Output
```text
The following ''gcs-bucket'' resources can be accessed by service connectors configured
in your workspace:'
- source_sentence: What is the result of executing a Deepchecks test suite in ZenML?
sentences:
- 'urns:
Deepchecks test suite execution result
"""# validation pre-processing (e.g. dataset preparation) can take place here
data_validator = DeepchecksDataValidator.get_active_data_validator()
suite = data_validator.data_validation(
dataset=dataset,
check_list=[
DeepchecksDataIntegrityCheck.TABULAR_OUTLIER_SAMPLE_DETECTION,
DeepchecksDataIntegrityCheck.TABULAR_STRING_LENGTH_OUT_OF_BOUNDS,
],
# validation post-processing (e.g. interpret results, take actions) can happen
here
return suite
The arguments that the Deepchecks Data Validator methods can take in are the same
as those used for the Deepchecks standard steps.
Have a look at the complete list of methods and parameters available in the DeepchecksDataValidator
API in the SDK docs.
Call Deepchecks directly
You can use the Deepchecks library directly in your custom pipeline steps, and
only leverage ZenML''s capability of serializing, versioning and storing the SuiteResult
objects in its Artifact Store, e.g.:
import pandas as pd
import deepchecks.tabular.checks as tabular_checks
from deepchecks.core.suite import SuiteResult
from deepchecks.tabular import Suite
from deepchecks.tabular import Dataset
from zenml import step
@step
def data_integrity_check(
dataset: pd.DataFrame,
) -> SuiteResult:
"""Custom data integrity check step with Deepchecks
Args:
dataset: a Pandas DataFrame
Returns:
Deepchecks test suite execution result
"""
# validation pre-processing (e.g. dataset preparation) can take place here
train_dataset = Dataset(
dataset,
label=''class'',
cat_features=[''country'', ''state'']
suite = Suite(name="custom")
check = tabular_checks.OutlierSampleDetection(
nearest_neighbors_percent=0.01,
extent_parameter=3,
check.add_condition_outlier_ratio_less_or_equal(
max_outliers_ratio=0.007,
outlier_score_threshold=0.5,
suite.add(check)
check = tabular_checks.StringLengthOutOfBounds(
num_percentiles=1000,
min_unique_values=3,
check.add_condition_number_of_outliers_less_or_equal(
max_outliers=3,'
- 'ervice-principal
```
Example Command Output
```Successfully connected orchestrator `aks-demo-cluster` to the following resources:
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ CONNECTOR ID │ CONNECTOR NAME │ CONNECTOR TYPE
│ RESOURCE TYPE │ RESOURCE NAMES ┃
┠──────────────────────────────────────┼─────────────────────────┼────────────────┼───────────────────────┼───────────────────────────────────────────────┨
┃ f2316191-d20b-4348-a68b-f5e347862196 │ azure-service-principal │ 🇦 azure │
🌀 kubernetes-cluster │ demo-zenml-demos/demo-zenml-terraform-cluster ┃
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
```
Register and connect an Azure Container Registry Stack Component to an ACR container
registry:Copyzenml container-registry register acr-demo-registry --flavor azure
--uri=demozenmlcontainerregistry.azurecr.io
Example Command Output
```
Successfully registered container_registry `acr-demo-registry`.
```
```sh
zenml container-registry connect acr-demo-registry --connector azure-service-principal
```
Example Command Output
```
Successfully connected container registry `acr-demo-registry` to the following
resources:
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ CONNECTOR ID │ CONNECTOR NAME │ CONNECTOR TYPE
│ RESOURCE TYPE │ RESOURCE NAMES ┃
┠──────────────────────────────────────┼─────────────────────────┼────────────────┼────────────────────┼───────────────────────────────────────┨
┃ f2316191-d20b-4348-a68b-f5e347862196 │ azure-service-principal │ 🇦 azure │
🐳 docker-registry │ demozenmlcontainerregistry.azurecr.io ┃'
- 'r │ zenhacks-cluster ┃┠───────────────────────┼──────────────────────────────────────────────┨
┃ 🐳 docker-registry │ 715803424590.dkr.ecr.us-east-1.amazonaws.com ┃
┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛
The Service Connector configuration shows long-lived credentials were lifted from
the local environment and the AWS Session Token authentication method was configured:
zenml service-connector describe aws-session-token
Example Command Output
Service connector ''aws-session-token'' of type ''aws'' with id ''3ae3e595-5cbc-446e-be64-e54e854e0e3f''
is owned by user ''default'' and is ''private''.
''aws-session-token'' aws Service Connector Details
┏━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ PROPERTY │ VALUE ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ ID │ c0f8e857-47f9-418b-a60f-c3b03023da54 ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ NAME │ aws-session-token ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ TYPE │ 🔶 aws ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ AUTH METHOD │ session-token ┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨
┃ RESOURCE TYPES │ 🔶 aws-generic, 📦 s3-bucket, 🌀 kubernetes-cluster, 🐳 docker-registry
┃
┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨'
model-index:
- name: zenml/finetuned-snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 384
type: dim_384
metrics:
- type: cosine_accuracy@1
value: 0.3614457831325301
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6987951807228916
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7530120481927711
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8554216867469879
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3614457831325301
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.23293172690763048
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15060240963855417
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08554216867469877
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3614457831325301
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6987951807228916
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7530120481927711
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8554216867469879
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6194049451779184
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5427878179384205
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5472907234693755
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.3433734939759036
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6807228915662651
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7650602409638554
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8373493975903614
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3433734939759036
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2269076305220883
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15301204819277103
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08373493975903612
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3433734939759036
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6807228915662651
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7650602409638554
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8373493975903614
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.602546157610675
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.525891661885638
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5310273317942533
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.3132530120481928
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6265060240963856
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.7168674698795181
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7891566265060241
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3132530120481928
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.20883534136546178
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1433734939759036
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0789156626506024
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3132530120481928
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.6265060240963856
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.7168674698795181
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7891566265060241
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5630057581169484
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4893144004589788
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4960510164414996
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.25903614457831325
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5120481927710844
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6325301204819277
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7168674698795181
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.25903614457831325
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.17068273092369476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12650602409638553
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07168674698795179
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.25903614457831325
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5120481927710844
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6325301204819277
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7168674698795181
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.48618223058871674
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.41233027347485207
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.42094598177412385
name: Cosine Map@100
---
# zenml/finetuned-snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision 71bc94c8f9ea1e54fba11167004205a65e5da2cc -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zenml/finetuned-snowflake-arctic-embed-m")
# Run inference
sentences = [
'What is the result of executing a Deepchecks test suite in ZenML?',
'urns:\n\nDeepchecks test suite execution result\n\n"""# validation pre-processing (e.g. dataset preparation) can take place here\n\ndata_validator = DeepchecksDataValidator.get_active_data_validator()\n\nsuite = data_validator.data_validation(\n\ndataset=dataset,\n\ncheck_list=[\n\nDeepchecksDataIntegrityCheck.TABULAR_OUTLIER_SAMPLE_DETECTION,\n\nDeepchecksDataIntegrityCheck.TABULAR_STRING_LENGTH_OUT_OF_BOUNDS,\n\n],\n\n# validation post-processing (e.g. interpret results, take actions) can happen here\n\nreturn suite\n\nThe arguments that the Deepchecks Data Validator methods can take in are the same as those used for the Deepchecks standard steps.\n\nHave a look at the complete list of methods and parameters available in the DeepchecksDataValidator API in the SDK docs.\n\nCall Deepchecks directly\n\nYou can use the Deepchecks library directly in your custom pipeline steps, and only leverage ZenML\'s capability of serializing, versioning and storing the SuiteResult objects in its Artifact Store, e.g.:\n\nimport pandas as pd\n\nimport deepchecks.tabular.checks as tabular_checks\n\nfrom deepchecks.core.suite import SuiteResult\n\nfrom deepchecks.tabular import Suite\n\nfrom deepchecks.tabular import Dataset\n\nfrom zenml import step\n\n@step\n\ndef data_integrity_check(\n\ndataset: pd.DataFrame,\n\n) -> SuiteResult:\n\n"""Custom data integrity check step with Deepchecks\n\nArgs:\n\ndataset: a Pandas DataFrame\n\nReturns:\n\nDeepchecks test suite execution result\n\n"""\n\n# validation pre-processing (e.g. dataset preparation) can take place here\n\ntrain_dataset = Dataset(\n\ndataset,\n\nlabel=\'class\',\n\ncat_features=[\'country\', \'state\']\n\nsuite = Suite(name="custom")\n\ncheck = tabular_checks.OutlierSampleDetection(\n\nnearest_neighbors_percent=0.01,\n\nextent_parameter=3,\n\ncheck.add_condition_outlier_ratio_less_or_equal(\n\nmax_outliers_ratio=0.007,\n\noutlier_score_threshold=0.5,\n\nsuite.add(check)\n\ncheck = tabular_checks.StringLengthOutOfBounds(\n\nnum_percentiles=1000,\n\nmin_unique_values=3,\n\ncheck.add_condition_number_of_outliers_less_or_equal(\n\nmax_outliers=3,',
"r │ zenhacks-cluster ┃┠───────────────────────┼──────────────────────────────────────────────┨\n\n┃ 🐳 docker-registry │ 715803424590.dkr.ecr.us-east-1.amazonaws.com ┃\n\n┗━━━━━━━━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛\n\nThe Service Connector configuration shows long-lived credentials were lifted from the local environment and the AWS Session Token authentication method was configured:\n\nzenml service-connector describe aws-session-token\n\nExample Command Output\n\nService connector 'aws-session-token' of type 'aws' with id '3ae3e595-5cbc-446e-be64-e54e854e0e3f' is owned by user 'default' and is 'private'.\n\n'aws-session-token' aws Service Connector Details\n\n┏━━━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n\n┃ PROPERTY │ VALUE ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨\n\n┃ ID │ c0f8e857-47f9-418b-a60f-c3b03023da54 ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨\n\n┃ NAME │ aws-session-token ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨\n\n┃ TYPE │ 🔶 aws ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨\n\n┃ AUTH METHOD │ session-token ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨\n\n┃ RESOURCE TYPES │ 🔶 aws-generic, 📦 s3-bucket, 🌀 kubernetes-cluster, 🐳 docker-registry ┃\n\n┠──────────────────┼─────────────────────────────────────────────────────────────────────────┨",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_384`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3614 |
| cosine_accuracy@3 | 0.6988 |
| cosine_accuracy@5 | 0.753 |
| cosine_accuracy@10 | 0.8554 |
| cosine_precision@1 | 0.3614 |
| cosine_precision@3 | 0.2329 |
| cosine_precision@5 | 0.1506 |
| cosine_precision@10 | 0.0855 |
| cosine_recall@1 | 0.3614 |
| cosine_recall@3 | 0.6988 |
| cosine_recall@5 | 0.753 |
| cosine_recall@10 | 0.8554 |
| cosine_ndcg@10 | 0.6194 |
| cosine_mrr@10 | 0.5428 |
| **cosine_map@100** | **0.5473** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.3434 |
| cosine_accuracy@3 | 0.6807 |
| cosine_accuracy@5 | 0.7651 |
| cosine_accuracy@10 | 0.8373 |
| cosine_precision@1 | 0.3434 |
| cosine_precision@3 | 0.2269 |
| cosine_precision@5 | 0.153 |
| cosine_precision@10 | 0.0837 |
| cosine_recall@1 | 0.3434 |
| cosine_recall@3 | 0.6807 |
| cosine_recall@5 | 0.7651 |
| cosine_recall@10 | 0.8373 |
| cosine_ndcg@10 | 0.6025 |
| cosine_mrr@10 | 0.5259 |
| **cosine_map@100** | **0.531** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3133 |
| cosine_accuracy@3 | 0.6265 |
| cosine_accuracy@5 | 0.7169 |
| cosine_accuracy@10 | 0.7892 |
| cosine_precision@1 | 0.3133 |
| cosine_precision@3 | 0.2088 |
| cosine_precision@5 | 0.1434 |
| cosine_precision@10 | 0.0789 |
| cosine_recall@1 | 0.3133 |
| cosine_recall@3 | 0.6265 |
| cosine_recall@5 | 0.7169 |
| cosine_recall@10 | 0.7892 |
| cosine_ndcg@10 | 0.563 |
| cosine_mrr@10 | 0.4893 |
| **cosine_map@100** | **0.4961** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.259 |
| cosine_accuracy@3 | 0.512 |
| cosine_accuracy@5 | 0.6325 |
| cosine_accuracy@10 | 0.7169 |
| cosine_precision@1 | 0.259 |
| cosine_precision@3 | 0.1707 |
| cosine_precision@5 | 0.1265 |
| cosine_precision@10 | 0.0717 |
| cosine_recall@1 | 0.259 |
| cosine_recall@3 | 0.512 |
| cosine_recall@5 | 0.6325 |
| cosine_recall@10 | 0.7169 |
| cosine_ndcg@10 | 0.4862 |
| cosine_mrr@10 | 0.4123 |
| **cosine_map@100** | **0.4209** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,490 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 21.15 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 373.39 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| positive | anchor |
|:---------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>How do I configure the IAM role for the ZenML AWS CLI profile?</code> | <code>ication method with a configured IAM role instead.The connector needs to be configured with the IAM role to be assumed accompanied by an AWS secret key associated with an IAM user or an STS token associated with another IAM role. The IAM user or IAM role must have permission to assume the target IAM role. The connector will generate temporary STS tokens upon request by calling the AssumeRole STS API.<br><br>The best practice implemented with this authentication scheme is to keep the set of permissions associated with the primary IAM user or IAM role down to the bare minimum and grant permissions to the privilege-bearing IAM role instead.<br><br>An AWS region is required and the connector may only be used to access AWS resources in the specified region.<br><br>One or more optional IAM session policies may also be configured to further restrict the permissions of the generated STS tokens. If not specified, IAM session policies are automatically configured for the generated STS tokens to restrict them to the minimum set of permissions required to access the target resource. Refer to the documentation for each supported Resource Type for the complete list of AWS permissions automatically granted to the generated STS tokens.<br><br>The default expiration period for generated STS tokens is 1 hour with a minimum of 15 minutes up to the maximum session duration setting configured for the IAM role (default is 1 hour). If you need longer-lived tokens, you can configure the IAM role to use a higher maximum expiration value (up to 12 hours) or use the AWS Federation Token or AWS Session Token authentication methods.<br><br>For more information on IAM roles and the AssumeRole AWS API, see the official AWS documentation on the subject.<br><br>For more information about the difference between this method and the AWS Federation Token authentication method, consult this AWS documentation page.<br><br>The following assumes the local AWS CLI has a zenml AWS CLI profile already configured with an AWS Secret Key and an IAM role to be assumed:</code> |
| <code>What command should be used to list all available alerter flavors after initializing ZenML at the root of the repository?</code> | <code>initializing zenml at the root of your repository.If ZenML does not find an initialized ZenML repository in any parent directory, it will default to the current working directory, but usually, it's better to not have to rely on this mechanism and initialize zenml at the root.<br><br>Afterward, you should see the new custom alerter flavor in the list of available alerter flavors:<br><br>zenml alerter flavor list<br><br>It is important to draw attention to when and how these abstractions are coming into play in a ZenML workflow.<br><br>The MyAlerterFlavor class is imported and utilized upon the creation of the custom flavor through the CLI.<br><br>The MyAlerterConfig class is imported when someone tries to register/update a stack component with the my_alerter flavor. Especially, during the registration process of the stack component, the config will be used to validate the values given by the user. As Config objects are inherently pydantic objects, you can also add your own custom validators here.<br><br>The MyAlerter only comes into play when the component is ultimately in use.<br><br>The design behind this interaction lets us separate the configuration of the flavor from its implementation. This way we can register flavors and components even when the major dependencies behind their implementation are not installed in our local setting (assuming the MyAlerterFlavor and the MyAlerterConfig are implemented in a different module/path than the actual MyAlerter).<br><br>PreviousSlack Alerter<br><br>NextImage Builders<br><br>Last updated 15 days ago</code> |
| <code>Where can I find the URL to the UI of a remote orchestrator for a pipeline run in ZenML?</code> | <code>g, and cached.<br><br>status = run.status<br><br>ConfigurationThe pipeline_configuration is an object that contains all configurations of the pipeline and pipeline run, including the pipeline-level settings, which we will learn more about later:<br><br>pipeline_config = run.config<br><br>pipeline_settings = run.config.settings<br><br>Component-Specific metadata<br><br>Depending on the stack components you use, you might have additional component-specific metadata associated with your run, such as the URL to the UI of a remote orchestrator. You can access this component-specific metadata via the run_metadata attribute:<br><br>run_metadata = run.run_metadata<br><br># The following only works for runs on certain remote orchestrators<br><br>orchestrator_url = run_metadata["orchestrator_url"].value<br><br>## Steps<br><br>Within a given pipeline run you can now further zoom in on individual steps using the `steps` attribute:<br><br>```python<br><br># get all steps of a pipeline for a given run<br><br>steps = run.steps<br><br># get a specific step by its invocation ID<br><br>step = run.steps["first_step"]<br><br>If you're only calling each step once inside your pipeline, the invocation ID will be the same as the name of your step. For more complex pipelines, check out this page to learn more about the invocation ID.<br><br>Inspect pipeline runs with our VS Code extension<br><br>If you are using our VS Code extension, you can easily view your pipeline runs by opening the sidebar (click on the ZenML icon). You can then click on any particular pipeline run to see its status and some other metadata. If you want to delete a run, you can also do so from the same sidebar view.<br><br>Step information<br><br>Similar to the run, you can use the step object to access a variety of useful information:<br><br>The parameters used to run the step via step.config.parameters,<br><br>The step-level settings via step.config.settings,<br><br>Component-specific step metadata, such as the URL of an experiment tracker or model deployer, via step.run_metadata<br><br>See the StepRunResponse definition for a comprehensive list of available information.<br><br>Artifacts</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
384,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: True
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 |
|:----------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.6667 | 1 | 0.4215 | 0.4509 | 0.4878 | 0.3203 |
| 2.0 | 3 | 0.4835 | 0.5278 | 0.5582 | 0.4141 |
| **2.6667** | **4** | **0.4961** | **0.531** | **0.5473** | **0.4209** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |