File size: 3,762 Bytes
81ebb35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f838d54
81ebb35
f838d54
 
 
81ebb35
 
 
 
7d68828
81ebb35
 
8f97687
f838d54
 
 
 
 
8f97687
81ebb35
f838d54
81ebb35
 
 
 
 
 
 
 
 
 
 
9ecd586
 
 
 
81ebb35
 
8f97687
 
f838d54
81ebb35
 
 
9ecd586
81ebb35
 
 
 
 
f838d54
81ebb35
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import pandas as pd
import numpy as np
import onnxruntime as ort
import os
from tqdm import tqdm
import timm
import torchvision.transforms as T
from PIL import Image
import torch

def is_gpu_available():
    """Check if the python package `onnxruntime-gpu` is installed."""
    return torch.cuda.is_available()


class PytorchWorker:
    """Run inference using ONNX runtime."""

    def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1784):

        def _load_model(model_name, model_path):

            print("Setting up Pytorch Model")
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            print(f"Using devide: {self.device}")

            model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False)

            # if not torch.cuda.is_available():
            #     model_ckpt = torch.load(model_path, map_location=torch.device("cpu"))
            # else:
            #     model_ckpt = torch.load(model_path)

            model_ckpt = torch.load(model_path, map_location=self.device)
            model.load_state_dict(model_ckpt)

            return model.to(self.device).eval()

        self.model = _load_model(model_name, model_path)

        self.transforms = T.Compose([T.Resize((256, 256)),
                                     T.ToTensor(),
                                     T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])


    def predict_image(self, image: np.ndarray) -> list():
        """Run inference using ONNX runtime.

        :param image: Input image as numpy array.
        :return: A list with logits and confidences.
        """

        logits = self.model(self.transforms(image).unsqueeze(0).to(self.device))

        return logits.tolist()


def make_submission(test_metadata, model_paths, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
    """Make submission with given """
    models = []
    for m in model_paths:
        models.append(PytorchWorker(m, model_name))

    predictions = []

    for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
        image_path = os.path.join(images_root_path, row.filename)

        test_image = Image.open(image_path).convert("RGB")
        # flipped_image = test_image.transpose(Image.FLIP_LEFT_RIGHT)

        result_logits = []

        for model in models:
            result_logits += model.predict_image(test_image)
            # result_logits += model.predict_image(flipped_image)

        logits = np.average(np.array(result_logits), 0)

        predictions.append(np.argmax(logits))

    test_metadata["class_id"] = predictions

    user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
    user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)


if __name__ == "__main__":

    import zipfile
    
    with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
        zip_ref.extractall("/tmp/data")

    # MODEL_PATH = "pytorch_model.bin"
    MODEL_PATH = ["__best_accuracy.pth",
                  # "2405_cls_boost_best_accuracy.pth"
                 ]
    # MODEL_NAME = "tf_efficientnet_b1.ap_in1k"
    MODEL_NAME = "swinv2_tiny_window16_256.ms_in1k"

    metadata_file_path = "./SnakeCLEF2024-TestMetadata.csv"
    # metadata_file_path = "/home/zeleznyt/mnt/data-ntis/projects/korpusy_cv/SnakeCLEF2024/SnakeCLEF2023-ValMetadata.csv"
    test_metadata = pd.read_csv(metadata_file_path)

    make_submission(
        test_metadata=test_metadata,
        model_paths=MODEL_PATH,
        model_name=MODEL_NAME,
        # images_root_path='/home/zeleznyt/mnt/data-ntis/projects/korpusy_cv/SnakeCLEF2024/val/SnakeCLEF2023-medium_size'
    )