zekun-li commited on
Commit
15e5d5a
·
1 Parent(s): 41b94a6

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -63
README.md CHANGED
@@ -31,22 +31,16 @@ widget:
31
  # Model Card for GeoLM model for Toponym Recognition
32
 
33
  <!-- Provide a quick summary of what the model is/does. [Optional] -->
34
- Pretrain the GeoLM model on world-wide OpenStreetMap (OSM), WikiData and Wikipedia data, then fine-tune it for Toponym Recognition task on GeoWebNews dataset
35
 
36
 
37
 
38
 
39
  # Table of Contents
40
 
41
- - [Model Card for GeoLM model for Toponym Recognition](#model-card-for--model_id-)
42
- - [Table of Contents](#table-of-contents)
43
- - [Table of Contents](#table-of-contents-1)
44
  - [Model Details](#model-details)
45
  - [Model Description](#model-description)
46
  - [Uses](#uses)
47
- - [Direct Use](#direct-use)
48
- - [Downstream Use [Optional]](#downstream-use-optional)
49
- - [Out-of-Scope Use](#out-of-scope-use)
50
  - [Bias, Risks, and Limitations](#bias-risks-and-limitations)
51
  - [Recommendations](#recommendations)
52
  - [Training Details](#training-details)
@@ -60,16 +54,10 @@ Pretrain the GeoLM model on world-wide OpenStreetMap (OSM), WikiData and Wikiped
60
  - [Factors](#factors)
61
  - [Metrics](#metrics)
62
  - [Results](#results)
63
- - [Model Examination](#model-examination)
64
- - [Environmental Impact](#environmental-impact)
65
  - [Technical Specifications [optional]](#technical-specifications-optional)
66
  - [Model Architecture and Objective](#model-architecture-and-objective)
67
  - [Compute Infrastructure](#compute-infrastructure)
68
- - [Hardware](#hardware)
69
- - [Software](#software)
70
  - [Citation](#citation)
71
- - [Glossary [optional]](#glossary-optional)
72
- - [More Information [optional]](#more-information-optional)
73
  - [Model Card Authors [optional]](#model-card-authors-optional)
74
  - [Model Card Contact](#model-card-contact)
75
  - [How to Get Started with the Model](#how-to-get-started-with-the-model)
@@ -94,27 +82,14 @@ Pretrain the GeoLM model on world-wide OpenStreetMap (OSM), WikiData and Wikiped
94
  # Uses
95
 
96
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
97
-
98
- ## Direct Use
99
-
100
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
101
- <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
102
-
103
 
104
 
105
 
106
- ## Downstream Use [Optional]
107
-
108
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
109
  <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
110
-
111
-
112
 
113
 
114
- ## Out-of-Scope Use
115
-
116
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
117
- <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
118
 
119
 
120
 
@@ -126,12 +101,6 @@ Pretrain the GeoLM model on world-wide OpenStreetMap (OSM), WikiData and Wikiped
126
  Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
127
 
128
 
129
- ## Recommendations
130
-
131
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
132
-
133
-
134
-
135
 
136
 
137
  # Training Details
@@ -186,21 +155,7 @@ More information needed
186
 
187
  More information needed
188
 
189
- # Model Examination
190
 
191
- More information needed
192
-
193
- # Environmental Impact
194
-
195
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
196
-
197
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
198
-
199
- - **Hardware Type:** More information needed
200
- - **Hours used:** More information needed
201
- - **Cloud Provider:** More information needed
202
- - **Compute Region:** More information needed
203
- - **Carbon Emitted:** More information needed
204
 
205
  # Technical Specifications [optional]
206
 
@@ -212,13 +167,6 @@ More information needed
212
 
213
  More information needed
214
 
215
- ### Hardware
216
-
217
- More information needed
218
-
219
- ### Software
220
-
221
- More information needed
222
 
223
  # Citation
224
 
@@ -232,15 +180,7 @@ More information needed
232
 
233
  More information needed
234
 
235
- # Glossary [optional]
236
 
237
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
238
-
239
- More information needed
240
-
241
- # More Information [optional]
242
-
243
- More information needed
244
 
245
  # Model Card Authors [optional]
246
 
 
31
  # Model Card for GeoLM model for Toponym Recognition
32
 
33
  <!-- Provide a quick summary of what the model is/does. [Optional] -->
34
+ A language model for detection toponyms (i.e. place names) from sentences. We pretrain the GeoLM model on world-wide OpenStreetMap (OSM), WikiData and Wikipedia data, then fine-tune it for Toponym Recognition task on GeoWebNews dataset
35
 
36
 
37
 
38
 
39
  # Table of Contents
40
 
 
 
 
41
  - [Model Details](#model-details)
42
  - [Model Description](#model-description)
43
  - [Uses](#uses)
 
 
 
44
  - [Bias, Risks, and Limitations](#bias-risks-and-limitations)
45
  - [Recommendations](#recommendations)
46
  - [Training Details](#training-details)
 
54
  - [Factors](#factors)
55
  - [Metrics](#metrics)
56
  - [Results](#results)
 
 
57
  - [Technical Specifications [optional]](#technical-specifications-optional)
58
  - [Model Architecture and Objective](#model-architecture-and-objective)
59
  - [Compute Infrastructure](#compute-infrastructure)
 
 
60
  - [Citation](#citation)
 
 
61
  - [Model Card Authors [optional]](#model-card-authors-optional)
62
  - [Model Card Contact](#model-card-contact)
63
  - [How to Get Started with the Model](#how-to-get-started-with-the-model)
 
82
  # Uses
83
 
84
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
85
+ This is a fine-tuned GeoLM model for toponym detection task. The inputs are sentences and outputs are detected toponyms. Please refer to the demo on the right-side pannel for examples.
 
 
 
 
 
86
 
87
 
88
 
89
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
90
  <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
 
 
91
 
92
 
 
 
 
 
93
 
94
 
95
 
 
101
  Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
102
 
103
 
 
 
 
 
 
 
104
 
105
 
106
  # Training Details
 
155
 
156
  More information needed
157
 
 
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
160
  # Technical Specifications [optional]
161
 
 
167
 
168
  More information needed
169
 
 
 
 
 
 
 
 
170
 
171
  # Citation
172
 
 
180
 
181
  More information needed
182
 
 
183
 
 
 
 
 
 
 
 
184
 
185
  # Model Card Authors [optional]
186