File size: 1,490 Bytes
e9d6631 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
base_model: facebook/bart-base
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bart-base-summarization-medical-49
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-summarization-medical-49
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 3.8635
- eval_rouge1: 0.2103
- eval_rouge2: 0.079
- eval_rougeL: 0.18
- eval_rougeLsum: 0.1799
- eval_gen_len: 19.976
- eval_runtime: 255.3131
- eval_samples_per_second: 3.917
- eval_steps_per_second: 3.917
- step: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 49
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |