zaydzuhri's picture
Training in progress, step 2500
0094a2a verified
# -*- coding: utf-8 -*-
import torch
from einops import rearrange
def torch_simple_gla(q, k, v, g, chunk_size=64, scale=None):
if scale is None:
scale = (q.shape[-1] ** -0.5)
q = rearrange(q, 'b h (n c) d -> b h n c d', c=chunk_size) * scale
k = rearrange(k, 'b h (n c) d -> b h n c d', c=chunk_size)
v = rearrange(v, 'b h (n c) d -> b h n c d', c=chunk_size)
g = rearrange(g, 'b h (n c) -> b h n c', c=chunk_size)
g = g.cumsum(-1)
kv = k.transpose(-1, -2) @ (v * (-g + g[:, :, :, -1, None]).exp()[..., None])
S = torch.zeros_like(kv)
for i in range(1, g.shape[-2]):
S[:, :, i] = S[:, :, i-1].clone() * g[:, :, i-1, -1, None, None].exp() + kv[:, :, i-1]
inter = (q * g[..., None].exp()) @ S
attn = q @ k.transpose(-1, -2)
attn = attn * (g[..., None] - g[..., None, :]).exp()
attn = attn.masked_fill(torch.triu(torch.ones(chunk_size, chunk_size, dtype=bool, device=q.device), diagonal=1), 0)
intra = attn @ v
o = inter + intra
return rearrange(o, 'b h n c d -> b h (n c) d')
def torch_simple_gla_recurrent(q, k, v, g, scale=None, initial_state=None, output_final_state=True):
B, H, T, DK = q.shape
original_dtype = q.dtype
q, k, v, g = q.float(), k.float(), v.float(), g.float()
if scale is None:
scale = DK ** -0.5
q = q * scale
_, _, _, DV = v.shape
if initial_state is None:
S = torch.zeros(B, H, DK, DV)
else:
S = initial_state
o = torch.zeros(B, H, T, DV).to(q)
for i in range(T):
gate = g[:, :, i].exp()
key = k[:, :, i]
value = v[:, :, i]
kv = key.unsqueeze(-1) * value.unsqueeze(-2)
S = S.clone() * gate.unsqueeze(-1).unsqueeze(-1) + kv
q_i = q[:, :, i, :]
o_i = (q_i.unsqueeze(-1) * S).sum(-2)
o[:, :, i] = o_i
if not output_final_state:
S = None
return o.to(original_dtype), S