Training in progress, step 2500
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +165 -0
- config.json +35 -0
- configs/deepspeed.yaml +10 -0
- configs/ds_config.json +19 -0
- configs/gla_16M.json +26 -0
- configs/gla_1B.json +26 -0
- configs/gla_340M.json +26 -0
- configs/gla_7B.json +29 -0
- configs/gsa_16M.json +27 -0
- configs/scan_16M.json +29 -0
- configs/scan_20M.json +29 -0
- configs/scan_340M.json +29 -0
- configs/transformer_16M.json +26 -0
- fla/__init__.py +58 -0
- fla/layers/__init__.py +31 -0
- fla/layers/abc.py +207 -0
- fla/layers/attn.py +182 -0
- fla/layers/based.py +105 -0
- fla/layers/bitattn.py +183 -0
- fla/layers/delta_net.py +267 -0
- fla/layers/gla.py +280 -0
- fla/layers/gsa.py +233 -0
- fla/layers/hgrn.py +153 -0
- fla/layers/hgrn2.py +207 -0
- fla/layers/linear_attn.py +171 -0
- fla/layers/multiscale_retention.py +282 -0
- fla/layers/rebased.py +136 -0
- fla/layers/rwkv6.py +291 -0
- fla/layers/scan.py +237 -0
- fla/layers/simple_gla.py +252 -0
- fla/models/__init__.py +39 -0
- fla/models/abc/__init__.py +13 -0
- fla/models/abc/configuration_abc.py +84 -0
- fla/models/abc/modeling_abc.py +403 -0
- fla/models/bitnet/__init__.py +13 -0
- fla/models/bitnet/configuration_bitnet.py +68 -0
- fla/models/bitnet/modeling_bitnet.py +428 -0
- fla/models/delta_net/__init__.py +13 -0
- fla/models/delta_net/configuration_delta_net.py +87 -0
- fla/models/delta_net/modeling_delta_net.py +439 -0
- fla/models/gla/__init__.py +13 -0
- fla/models/gla/configuration_gla.py +90 -0
- fla/models/gla/modeling_gla.py +418 -0
- fla/models/gsa/__init__.py +13 -0
- fla/models/gsa/configuration_gsa.py +94 -0
- fla/models/gsa/modeling_gsa.py +442 -0
- fla/models/hgrn/__init__.py +13 -0
- fla/models/hgrn/configuration_hgrn.py +74 -0
- fla/models/hgrn/modeling_hgrn.py +421 -0
- fla/models/hgrn2/__init__.py +13 -0
README.md
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
|
3 |
+
# 🔥 Flame
|
4 |
+
|
5 |
+
</div>
|
6 |
+
|
7 |
+
A minimal framework for training FLA models, whether from scratch or through finetuning.
|
8 |
+
|
9 |
+
Built on the robust infrastructure of 🤗, `flame` enables you to train large language models with just a few lines of code:
|
10 |
+
we use `datasets` for data processing, `transformers` for model definitions, and `accelerate`[^1] for seamless distributed training.
|
11 |
+
|
12 |
+
In this README, we will guide you through the process of using `flame` to train GLA models.
|
13 |
+
|
14 |
+
## Setup
|
15 |
+
|
16 |
+
To get started, you'll need to install the required packages.
|
17 |
+
Both `fla` and `flame` have minimal dependencies.
|
18 |
+
Clone the `fla` repository and install the necessary packages as follows:
|
19 |
+
|
20 |
+
```bash
|
21 |
+
git clone https://github.com/sustcsonglin/flash-linear-attention.git
|
22 |
+
pip install .
|
23 |
+
pip install accelerate wandb
|
24 |
+
pip3 install deepspeed
|
25 |
+
```
|
26 |
+
|
27 |
+
> [!CAUTION]
|
28 |
+
> The 🤗 `tokenizers` have some [memory leak issues](https://github.com/huggingface/tokenizers/issues/1539) when processing very long documents.
|
29 |
+
> To address this, please ensure you install `tokenizers>=0.20.4`.
|
30 |
+
|
31 |
+
## Preprocessing
|
32 |
+
|
33 |
+
Before training, you need to download and pre-tokenize your dataset.
|
34 |
+
We provide a straightforward script for this.
|
35 |
+
For instance, to tokenize a 10B sample of the `fineweb-edu` dataset, run:
|
36 |
+
|
37 |
+
```bash
|
38 |
+
python preprocess.py \
|
39 |
+
--dataset HuggingFaceFW/fineweb-edu \
|
40 |
+
--name sample-10BT \
|
41 |
+
--split train \
|
42 |
+
--context_length 2048
|
43 |
+
```
|
44 |
+
or an even smaller example, just for testing:
|
45 |
+
```bash
|
46 |
+
python preprocess.py \
|
47 |
+
--dataset alturing/gutenberg-texts \
|
48 |
+
--split train \
|
49 |
+
--context_length 2048
|
50 |
+
```
|
51 |
+
|
52 |
+
This will cache the processed dataset at `data/HuggingFaceFW/fineweb-edu/sample-10BT/train`.
|
53 |
+
|
54 |
+
GLA utilizes a subset of Slimpajama for pretraining [in the paper](https://proceedings.mlr.press/v235/yang24ab.html).
|
55 |
+
Given the size of the dataset, the fastest way to download it is using `git lfs` (refer to [this issue](https://huggingface.co/datasets/cerebras/SlimPajama-627B/discussions/2)).
|
56 |
+
```bash
|
57 |
+
git lfs install
|
58 |
+
git clone https://huggingface.co/datasets/cerebras/SlimPajama-627B
|
59 |
+
python preprocess.py \
|
60 |
+
--dataset SlimPajama-627B \
|
61 |
+
--split train \
|
62 |
+
--context_length 2048
|
63 |
+
```
|
64 |
+
|
65 |
+
## Training from scratch
|
66 |
+
|
67 |
+
To train your 340M model from scratch, execute the following command:
|
68 |
+
|
69 |
+
```bash
|
70 |
+
bash train.sh \
|
71 |
+
type=gla \
|
72 |
+
lr=3e-4 \
|
73 |
+
steps=20480 \
|
74 |
+
batch=8 \
|
75 |
+
update=1 \
|
76 |
+
warmup=1024 \
|
77 |
+
context=2048 \
|
78 |
+
path=exp/gla-340M-10B \
|
79 |
+
project=fla \
|
80 |
+
model=configs/gla_340M.json \
|
81 |
+
data=HuggingFaceFW/fineweb-edu \
|
82 |
+
name=sample-10BT \
|
83 |
+
cache=data/HuggingFaceFW/fineweb-edu/sample-10BT/train
|
84 |
+
```
|
85 |
+
or for testing SCAN:
|
86 |
+
```bash
|
87 |
+
bash train.sh \
|
88 |
+
type=scan \
|
89 |
+
lr=3e-4 \
|
90 |
+
steps=1000 \
|
91 |
+
batch=8 \
|
92 |
+
update=1 \
|
93 |
+
warmup=100 \
|
94 |
+
context=2048 \
|
95 |
+
path=exp/scan-340M-test \
|
96 |
+
project=fla \
|
97 |
+
model=configs/scan_340M.json \
|
98 |
+
data=alturing/gutenberg-texts \
|
99 |
+
name=sample-10BT \
|
100 |
+
cache=data/alturing/gutenberg-texts/train
|
101 |
+
```
|
102 |
+
|
103 |
+
`flame` also supports resuming interrupted training by specifying the checkpoint path.
|
104 |
+
Simply use the following command to resume training:
|
105 |
+
|
106 |
+
```bash
|
107 |
+
bash train.sh \
|
108 |
+
type=gla \
|
109 |
+
lr=3e-4 \
|
110 |
+
steps=20480 \
|
111 |
+
batch=8 \
|
112 |
+
update=1 \
|
113 |
+
warmup=1024 \
|
114 |
+
context=2048 \
|
115 |
+
path=exp/gla-340M-10B \
|
116 |
+
project=fla \
|
117 |
+
model=configs/gla_340M.json \
|
118 |
+
data=HuggingFaceFW/fineweb-edu \
|
119 |
+
name=sample-10BT \
|
120 |
+
cache=data/HuggingFaceFW/fineweb-edu/sample-10BT/train \
|
121 |
+
checkpoint=exp/gla-340M-10B/checkpoint-8192
|
122 |
+
```
|
123 |
+
|
124 |
+
You can also use `wandb` to monitor your training process effectively.
|
125 |
+
|
126 |
+
![wandb](https://github.com/user-attachments/assets/05ca031c-1cae-41c9-bfcb-5b6b6d0df729)
|
127 |
+
|
128 |
+
## Continual Pretraining
|
129 |
+
|
130 |
+
`flame` supports continual training from a pretrained checkpoint.
|
131 |
+
Below, we provide an example of how to finetune Mistral-7B to GLA.
|
132 |
+
You can follow similar steps to reproduce the results in the [GSA paper](https://arxiv.org/abs/2409.07146):
|
133 |
+
|
134 |
+
1. Initialize a brand-new GLA-7B model from the config and copy the mathced pretrained weights from Mistral-7B:
|
135 |
+
```bash
|
136 |
+
cd ../utils
|
137 |
+
python convert_from_llama.py \
|
138 |
+
--model mistralai/Mistral-7B-v0.1 \
|
139 |
+
--config ../training/configs/gla_7B.json \
|
140 |
+
--output ../training/converted/gla-7B
|
141 |
+
cd -
|
142 |
+
```
|
143 |
+
|
144 |
+
2. Directly launch training from the converted checkpoint:
|
145 |
+
```bash
|
146 |
+
bash train.sh \
|
147 |
+
type=gla \
|
148 |
+
lr=3e-5 \
|
149 |
+
steps=10240 \
|
150 |
+
batch=4 \
|
151 |
+
update=8 \
|
152 |
+
warmup=512 \
|
153 |
+
context=2048 \
|
154 |
+
path=exp/gla-7B-20B \
|
155 |
+
project=fla \
|
156 |
+
model=converted/gla-7B \
|
157 |
+
data=SlimPajama-627B \
|
158 |
+
cache=data/SlimPajama-627B/train
|
159 |
+
```
|
160 |
+
|
161 |
+
Please be aware that finetuning on a single node may not be the most efficient approach.
|
162 |
+
If available, consider leveraging multi-node GPUs for optimal performance.
|
163 |
+
You can find guidance on how to launch a multi-node job in the [accelerate tutorial](https://github.com/huggingface/accelerate/blob/main/examples/slurm/submit_multinode.sh).
|
164 |
+
|
165 |
+
[^1]: The `accelerate` library supports various distributed frameworks, like `deepspeed` and `megatron` for large-scale training. We use `deepspeed` in our case.
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "configs/transformer_16M.json",
|
3 |
+
"architectures": [
|
4 |
+
"TransformerForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"clamp_min": null,
|
9 |
+
"elementwise_affine": true,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"fuse_cross_entropy": true,
|
12 |
+
"fuse_norm": true,
|
13 |
+
"hidden_act": "swish",
|
14 |
+
"hidden_ratio": 4,
|
15 |
+
"hidden_size": 256,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": null,
|
18 |
+
"max_position_embeddings": 2048,
|
19 |
+
"model_type": "transformer",
|
20 |
+
"norm_eps": 1e-06,
|
21 |
+
"norm_first": false,
|
22 |
+
"num_heads": 4,
|
23 |
+
"num_hidden_layers": 10,
|
24 |
+
"num_kv_heads": 4,
|
25 |
+
"rope_theta": 10000.0,
|
26 |
+
"state_size": 16,
|
27 |
+
"tie_word_embeddings": true,
|
28 |
+
"torch_dtype": "bfloat16",
|
29 |
+
"transformers_version": "4.47.0",
|
30 |
+
"use_cache": true,
|
31 |
+
"use_gk": true,
|
32 |
+
"use_gv": false,
|
33 |
+
"vocab_size": 32000,
|
34 |
+
"window_size": null
|
35 |
+
}
|
configs/deepspeed.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
compute_environment: LOCAL_MACHINE
|
2 |
+
distributed_type: DEEPSPEED
|
3 |
+
deepspeed_config:
|
4 |
+
deepspeed_config_file: configs/ds_config.json
|
5 |
+
zero3_init_flag: true
|
6 |
+
machine_rank: 0
|
7 |
+
main_training_function: main
|
8 |
+
num_machines: 1
|
9 |
+
num_processes: 1
|
10 |
+
use_cpu: false
|
configs/ds_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train_batch_size": "auto",
|
3 |
+
"train_micro_batch_size_per_gpu": "auto",
|
4 |
+
"gradient_accumulation_steps": "auto",
|
5 |
+
"gradient_clipping": "auto",
|
6 |
+
"zero_allow_untested_optimizer": true,
|
7 |
+
"bf16": {
|
8 |
+
"enabled": true
|
9 |
+
},
|
10 |
+
"zero_optimization": {
|
11 |
+
"stage": 2,
|
12 |
+
"allgather_partitions": true,
|
13 |
+
"allgather_bucket_size": 5e8,
|
14 |
+
"reduce_scatter": true,
|
15 |
+
"reduce_bucket_size": 5e8,
|
16 |
+
"overlap_comm": false,
|
17 |
+
"contiguous_gradients": true
|
18 |
+
}
|
19 |
+
}
|
configs/gla_16M.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "chunk",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"clamp_min": null,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 0.5,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"fuse_norm": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"hidden_ratio": 4,
|
12 |
+
"hidden_size": 256,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": null,
|
15 |
+
"max_position_embeddings": 2048,
|
16 |
+
"model_type": "gla",
|
17 |
+
"num_heads": 4,
|
18 |
+
"num_hidden_layers": 10,
|
19 |
+
"norm_eps": 1e-06,
|
20 |
+
"tie_word_embeddings": true,
|
21 |
+
"transformers_version": "4.38.2",
|
22 |
+
"use_cache": true,
|
23 |
+
"use_gk": true,
|
24 |
+
"use_gv": false,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
configs/gla_1B.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "chunk",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"clamp_min": null,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 0.5,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"fuse_norm": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"hidden_ratio": 4,
|
12 |
+
"hidden_size": 2048,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": null,
|
15 |
+
"max_position_embeddings": 2048,
|
16 |
+
"model_type": "gla",
|
17 |
+
"num_heads": 4,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"norm_eps": 1e-06,
|
20 |
+
"tie_word_embeddings": false,
|
21 |
+
"transformers_version": "4.38.2",
|
22 |
+
"use_cache": true,
|
23 |
+
"use_gk": true,
|
24 |
+
"use_gv": false,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
configs/gla_340M.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "chunk",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"clamp_min": null,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 0.5,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"fuse_norm": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"hidden_ratio": 4,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": null,
|
15 |
+
"max_position_embeddings": 2048,
|
16 |
+
"model_type": "gla",
|
17 |
+
"num_heads": 4,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"norm_eps": 1e-06,
|
20 |
+
"tie_word_embeddings": true,
|
21 |
+
"transformers_version": "4.38.2",
|
22 |
+
"use_cache": true,
|
23 |
+
"use_gk": true,
|
24 |
+
"use_gv": false,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
configs/gla_7B.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "chunk",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"clamp_min": null,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 1,
|
7 |
+
"expand_v": 1,
|
8 |
+
"feature_map": "relu",
|
9 |
+
"fuse_cross_entropy": true,
|
10 |
+
"fuse_norm": true,
|
11 |
+
"hidden_act": "swish",
|
12 |
+
"hidden_ratio": 4,
|
13 |
+
"hidden_size": 4096,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 14336,
|
16 |
+
"max_position_embeddings": 32768,
|
17 |
+
"model_type": "gla",
|
18 |
+
"num_heads": 32,
|
19 |
+
"num_kv_heads": 8,
|
20 |
+
"num_hidden_layers": 32,
|
21 |
+
"norm_eps": 1e-05,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"transformers_version": "4.40.0",
|
24 |
+
"use_cache": true,
|
25 |
+
"use_output_gate": false,
|
26 |
+
"use_gk": true,
|
27 |
+
"use_gv": false,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
configs/gsa_16M.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "chunk",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"clamp_min": null,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 1,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"fuse_norm": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"hidden_ratio": 4,
|
12 |
+
"hidden_size": 256,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": null,
|
15 |
+
"max_position_embeddings": 2048,
|
16 |
+
"model_type": "gsa",
|
17 |
+
"num_slots": 16,
|
18 |
+
"num_heads": 4,
|
19 |
+
"num_hidden_layers": 10,
|
20 |
+
"norm_eps": 1e-06,
|
21 |
+
"tie_word_embeddings": true,
|
22 |
+
"transformers_version": "4.38.2",
|
23 |
+
"use_cache": true,
|
24 |
+
"use_gk": true,
|
25 |
+
"use_gv": false,
|
26 |
+
"vocab_size": 32000
|
27 |
+
}
|
configs/scan_16M.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "parallel",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"clamp_min": null,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 1,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"fuse_norm": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"gate_act": "softmax",
|
12 |
+
"hidden_ratio": 4,
|
13 |
+
"hidden_size": 256,
|
14 |
+
"window_size": 128,
|
15 |
+
"state_size": 16,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": null,
|
18 |
+
"max_position_embeddings": 2048,
|
19 |
+
"model_type": "scan",
|
20 |
+
"num_heads": 4,
|
21 |
+
"num_hidden_layers": 10,
|
22 |
+
"norm_eps": 1e-06,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"transformers_version": "4.38.2",
|
25 |
+
"use_cache": true,
|
26 |
+
"use_gk": true,
|
27 |
+
"use_gv": false,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
configs/scan_20M.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "parallel",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"clamp_min": null,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 1,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"fuse_norm": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"gate_act": "softmax",
|
12 |
+
"hidden_ratio": 4,
|
13 |
+
"hidden_size": 384,
|
14 |
+
"window_size": 128,
|
15 |
+
"state_size": 16,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": null,
|
18 |
+
"max_position_embeddings": 2048,
|
19 |
+
"model_type": "scan",
|
20 |
+
"num_heads": 6,
|
21 |
+
"num_hidden_layers": 10,
|
22 |
+
"norm_eps": 1e-06,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"transformers_version": "4.38.2",
|
25 |
+
"use_cache": true,
|
26 |
+
"use_gk": true,
|
27 |
+
"use_gv": false,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
configs/scan_340M.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_mode": "parallel",
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"clamp_min": null,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"expand_k": 1,
|
7 |
+
"expand_v": 1,
|
8 |
+
"fuse_cross_entropy": true,
|
9 |
+
"fuse_norm": true,
|
10 |
+
"hidden_act": "swish",
|
11 |
+
"gate_act": "softmax",
|
12 |
+
"hidden_ratio": 4,
|
13 |
+
"hidden_size": 1024,
|
14 |
+
"window_size": 128,
|
15 |
+
"state_size": 32,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": null,
|
18 |
+
"max_position_embeddings": 2048,
|
19 |
+
"model_type": "scan",
|
20 |
+
"num_heads": 4,
|
21 |
+
"num_hidden_layers": 24,
|
22 |
+
"norm_eps": 1e-06,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"transformers_version": "4.38.2",
|
25 |
+
"use_cache": true,
|
26 |
+
"use_gk": true,
|
27 |
+
"use_gv": false,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
configs/transformer_16M.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "transformer",
|
3 |
+
"attention_bias": false,
|
4 |
+
"bos_token_id": 1,
|
5 |
+
"clamp_min": null,
|
6 |
+
"eos_token_id": 2,
|
7 |
+
"fuse_cross_entropy": true,
|
8 |
+
"fuse_norm": true,
|
9 |
+
"hidden_act": "swish",
|
10 |
+
"hidden_ratio": 4,
|
11 |
+
"hidden_size": 256,
|
12 |
+
"state_size": 16,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": null,
|
15 |
+
"max_position_embeddings": 2048,
|
16 |
+
"num_heads": 4,
|
17 |
+
"num_kv_heads": 4,
|
18 |
+
"num_hidden_layers": 10,
|
19 |
+
"norm_eps": 1e-06,
|
20 |
+
"tie_word_embeddings": true,
|
21 |
+
"transformers_version": "4.38.2",
|
22 |
+
"use_cache": true,
|
23 |
+
"use_gk": true,
|
24 |
+
"use_gv": false,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
fla/__init__.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from fla.layers import (ABCAttention, Attention, BasedLinearAttention,
|
4 |
+
BitAttention, DeltaNet, GatedLinearAttention,
|
5 |
+
GatedSlotAttention, HGRN2Attention, HGRNAttention,
|
6 |
+
LinearAttention, MultiScaleRetention,
|
7 |
+
ReBasedLinearAttention)
|
8 |
+
from fla.models import (ABCForCausalLM, ABCModel, BitNetForCausalLM,
|
9 |
+
BitNetModel, DeltaNetForCausalLM, DeltaNetModel,
|
10 |
+
GLAForCausalLM, GLAModel, GSAForCausalLM, GSAModel,
|
11 |
+
HGRN2ForCausalLM, HGRN2Model, HGRNForCausalLM,
|
12 |
+
LinearAttentionForCausalLM, LinearAttentionModel,
|
13 |
+
RetNetForCausalLM, RetNetModel, RWKV6ForCausalLM,
|
14 |
+
RWKV6Model, TransformerForCausalLM, TransformerModel)
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
'ABCAttention',
|
18 |
+
'Attention',
|
19 |
+
'BasedLinearAttention',
|
20 |
+
'BitAttention',
|
21 |
+
'DeltaNet',
|
22 |
+
'HGRNAttention',
|
23 |
+
'HGRN2Attention',
|
24 |
+
'GatedLinearAttention',
|
25 |
+
'GatedSlotAttention',
|
26 |
+
'LinearAttention',
|
27 |
+
'MultiScaleRetention',
|
28 |
+
'ReBasedLinearAttention',
|
29 |
+
'ABCForCausalLM',
|
30 |
+
'ABCModel',
|
31 |
+
'BitNetForCausalLM',
|
32 |
+
'BitNetModel',
|
33 |
+
'DeltaNetForCausalLM',
|
34 |
+
'DeltaNetModel',
|
35 |
+
'HGRNForCausalLM',
|
36 |
+
'HGRNModel',
|
37 |
+
'HGRN2ForCausalLM',
|
38 |
+
'HGRN2Model',
|
39 |
+
'GLAForCausalLM',
|
40 |
+
'GLAModel',
|
41 |
+
'GSAForCausalLM',
|
42 |
+
'GSAModel',
|
43 |
+
'LinearAttentionForCausalLM',
|
44 |
+
'LinearAttentionModel',
|
45 |
+
'RetNetForCausalLM',
|
46 |
+
'RetNetModel',
|
47 |
+
'RWKV6ForCausalLM',
|
48 |
+
'RWKV6Model',
|
49 |
+
'TransformerForCausalLM',
|
50 |
+
'TransformerModel',
|
51 |
+
'chunk_gla',
|
52 |
+
'chunk_retention',
|
53 |
+
'fused_chunk_based',
|
54 |
+
'fused_chunk_gla',
|
55 |
+
'fused_chunk_retention'
|
56 |
+
]
|
57 |
+
|
58 |
+
__version__ = '0.1'
|
fla/layers/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from .abc import ABCAttention
|
4 |
+
from .attn import Attention
|
5 |
+
from .based import BasedLinearAttention
|
6 |
+
from .bitattn import BitAttention
|
7 |
+
from .delta_net import DeltaNet
|
8 |
+
from .gla import GatedLinearAttention
|
9 |
+
from .gsa import GatedSlotAttention
|
10 |
+
from .hgrn import HGRNAttention
|
11 |
+
from .hgrn2 import HGRN2Attention
|
12 |
+
from .linear_attn import LinearAttention
|
13 |
+
from .multiscale_retention import MultiScaleRetention
|
14 |
+
from .rebased import ReBasedLinearAttention
|
15 |
+
from .rwkv6 import RWKV6Attention
|
16 |
+
|
17 |
+
__all__ = [
|
18 |
+
'ABCAttention',
|
19 |
+
'Attention',
|
20 |
+
'BasedLinearAttention',
|
21 |
+
'BitAttention',
|
22 |
+
'DeltaNet',
|
23 |
+
'GatedLinearAttention',
|
24 |
+
'GatedSlotAttention',
|
25 |
+
'HGRNAttention',
|
26 |
+
'HGRN2Attention',
|
27 |
+
'LinearAttention',
|
28 |
+
'MultiScaleRetention',
|
29 |
+
'ReBasedLinearAttention',
|
30 |
+
'RWKV6Attention',
|
31 |
+
]
|
fla/layers/abc.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from fla.modules import (FusedRMSNormSwishGate, RMSNorm, RotaryEmbedding,
|
14 |
+
ShortConvolution)
|
15 |
+
from fla.modules.activations import swiglu, swish
|
16 |
+
from fla.ops.abc.chunk import chunk_abc
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
class ABCAttention(nn.Module):
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
hidden_size: int = 1024,
|
27 |
+
expand_k: float = 0.5,
|
28 |
+
expand_v: float = 1.0,
|
29 |
+
num_heads: int = 4,
|
30 |
+
use_short_conv: bool = False,
|
31 |
+
conv_size: int = 4,
|
32 |
+
conv_bias: bool = False,
|
33 |
+
num_slots: Optional[int] = None,
|
34 |
+
elementwise_affine: Optional[bool] = True,
|
35 |
+
norm_eps: float = 1e-5,
|
36 |
+
gate_low_rank_dim: int = 16,
|
37 |
+
gate_logit_normalizer: int = 16,
|
38 |
+
use_input_gate: bool = False,
|
39 |
+
use_output_gate: bool = True,
|
40 |
+
use_norm: bool = True,
|
41 |
+
clamp_min: Optional[float] = -32,
|
42 |
+
clamp_max: Optional[float] = 32,
|
43 |
+
layer_idx: Optional[int] = None,
|
44 |
+
**kwargs
|
45 |
+
) -> ABCAttention:
|
46 |
+
super().__init__()
|
47 |
+
|
48 |
+
self.hidden_size = hidden_size
|
49 |
+
self.expand_k = expand_k
|
50 |
+
self.expand_v = expand_v
|
51 |
+
self.num_heads = num_heads
|
52 |
+
self.key_dim = int(self.hidden_size * self.expand_k)
|
53 |
+
self.value_dim = int(self.hidden_size * self.expand_v)
|
54 |
+
self.head_k_dim = self.key_dim // self.num_heads
|
55 |
+
self.head_v_dim = self.value_dim // self.num_heads
|
56 |
+
|
57 |
+
self.use_short_conv = use_short_conv
|
58 |
+
self.conv_size = conv_size
|
59 |
+
self.conv_bias = conv_bias
|
60 |
+
|
61 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
62 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
63 |
+
|
64 |
+
self.use_input_gate = use_input_gate
|
65 |
+
self.use_output_gate = use_output_gate
|
66 |
+
self.use_norm = use_norm
|
67 |
+
|
68 |
+
if num_slots is None:
|
69 |
+
num_slots = self.head_k_dim
|
70 |
+
self.num_slots = num_slots
|
71 |
+
|
72 |
+
self.norm_eps = norm_eps
|
73 |
+
|
74 |
+
self.clamp_min = clamp_min
|
75 |
+
self.clamp_max = clamp_max
|
76 |
+
self.layer_idx = layer_idx
|
77 |
+
|
78 |
+
if layer_idx is None:
|
79 |
+
warnings.warn(
|
80 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
81 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
82 |
+
"when creating this class."
|
83 |
+
)
|
84 |
+
|
85 |
+
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
86 |
+
self.k_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
87 |
+
self.v_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
|
88 |
+
|
89 |
+
if use_output_gate:
|
90 |
+
self.g_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
|
91 |
+
self.s_proj = nn.Linear(self.hidden_size, self.num_heads * self.num_slots, bias=False)
|
92 |
+
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
|
93 |
+
|
94 |
+
if use_short_conv:
|
95 |
+
self.conv_size = conv_size
|
96 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
97 |
+
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
98 |
+
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
|
99 |
+
|
100 |
+
if self.use_norm:
|
101 |
+
if self.use_output_gate:
|
102 |
+
self.g_norm = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
|
103 |
+
else:
|
104 |
+
self.g_norm = RMSNorm(hidden_size=self.head_v_dim, elementwise_affine=elementwise_affine, eps=norm_eps)
|
105 |
+
|
106 |
+
if self.use_rope:
|
107 |
+
self.rotary = RotaryEmbedding(self.head_k_dim)
|
108 |
+
|
109 |
+
self.apply(self._initialize_weights)
|
110 |
+
|
111 |
+
def _initialize_weights(self, module: nn.Module):
|
112 |
+
if getattr(module, "_is_hf_initialized", False):
|
113 |
+
return
|
114 |
+
if isinstance(module, nn.Linear):
|
115 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
116 |
+
if module.bias is not None:
|
117 |
+
nn.init.zeros_(module.bias)
|
118 |
+
module._is_hf_initialized = True
|
119 |
+
|
120 |
+
def forward(
|
121 |
+
self,
|
122 |
+
hidden_states: torch.Tensor,
|
123 |
+
attention_mask: Optional[torch.Tensor] = None,
|
124 |
+
past_key_values: Optional[Cache] = None,
|
125 |
+
use_cache: Optional[bool] = False,
|
126 |
+
output_attentions: Optional[bool] = False,
|
127 |
+
**kwargs
|
128 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
129 |
+
if attention_mask is not None:
|
130 |
+
assert len(attention_mask.shape) == 2, (
|
131 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
132 |
+
"for padding purposes (0 indicating padding). "
|
133 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
134 |
+
)
|
135 |
+
|
136 |
+
last_state = None
|
137 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
138 |
+
last_state = past_key_values[self.layer_idx]
|
139 |
+
|
140 |
+
if self.use_short_conv:
|
141 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
142 |
+
if last_state is not None:
|
143 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
144 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
145 |
+
q, conv_state_q = self.q_conv1d(x=self.q_proj(hidden_states),
|
146 |
+
mask=conv_mask,
|
147 |
+
cache=conv_state_q,
|
148 |
+
output_final_state=use_cache)
|
149 |
+
k, conv_state_k = self.k_conv1d(x=self.k_proj(hidden_states),
|
150 |
+
mask=conv_mask,
|
151 |
+
cache=conv_state_k,
|
152 |
+
output_final_state=use_cache)
|
153 |
+
v, conv_state_v = self.v_conv1d(x=self.v_proj(hidden_states),
|
154 |
+
mask=conv_mask,
|
155 |
+
cache=conv_state_v,
|
156 |
+
output_final_state=use_cache)
|
157 |
+
else:
|
158 |
+
q = self.q_proj(hidden_states)
|
159 |
+
k = self.k_proj(hidden_states)
|
160 |
+
v = self.v_proj(hidden_states)
|
161 |
+
|
162 |
+
if self.use_input_gate:
|
163 |
+
q, k, v = map(lambda x: swish(x), (q, k, v))
|
164 |
+
# dealing with left-padding
|
165 |
+
if attention_mask is not None:
|
166 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
167 |
+
|
168 |
+
q, k, v = map(lambda x: rearrange(x, '... (h d) -> ... h d', h=self.num_heads), (q, k, v))
|
169 |
+
if self.use_rope:
|
170 |
+
seqlen_offset = 0
|
171 |
+
if past_key_values is not None:
|
172 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
173 |
+
q, k = self.rotary(q, k, seqlen_offset)
|
174 |
+
|
175 |
+
s = rearrange(self.s_proj(hidden_states), '... (h m) -> ... h m', h=self.num_heads)
|
176 |
+
s = s.clamp_(self.clamp_min, self.clamp_max)
|
177 |
+
|
178 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
179 |
+
o, recurrent_state = chunk_abc(
|
180 |
+
q=q,
|
181 |
+
k=k,
|
182 |
+
v=v,
|
183 |
+
s=s,
|
184 |
+
initial_state=recurrent_state,
|
185 |
+
output_final_state=use_cache,
|
186 |
+
head_first=False
|
187 |
+
)
|
188 |
+
if past_key_values is not None:
|
189 |
+
past_key_values.update(
|
190 |
+
recurrent_state=recurrent_state,
|
191 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
192 |
+
layer_idx=self.layer_idx,
|
193 |
+
offset=q.shape[2]
|
194 |
+
)
|
195 |
+
|
196 |
+
if self.use_norm and not self.use_output_gate:
|
197 |
+
o = self.g_norm(o)
|
198 |
+
elif self.use_output_gate:
|
199 |
+
g = rearrange(self.g_proj(hidden_states), '... (h d) -> ... h d', h=self.num_heads)
|
200 |
+
o = self.g_norm(o, g) if self.use_norm else swiglu(g, o)
|
201 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
202 |
+
o = self.o_proj(o)
|
203 |
+
|
204 |
+
return o, None, past_key_values
|
205 |
+
|
206 |
+
def state_size(self, seq_len: int = 2048):
|
207 |
+
return self.num_heads * self.key_dim * self.head_v_dim
|
fla/layers/attn.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from einops import rearrange
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
from fla.modules import RMSNorm, RotaryEmbedding
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
try:
|
22 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
23 |
+
from flash_attn.bert_padding import (index_first_axis, pad_input,
|
24 |
+
unpad_input)
|
25 |
+
except ImportError:
|
26 |
+
warnings.warn(
|
27 |
+
"Flash Attention is not installed. Please install it via `pip install flash-attn --no-build-isolation`",
|
28 |
+
category=ImportWarning
|
29 |
+
)
|
30 |
+
flash_attn_func = None
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
class Attention(nn.Module):
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
hidden_size: int = 2048,
|
40 |
+
num_heads: int = 32,
|
41 |
+
num_kv_heads: Optional[int] = None,
|
42 |
+
window_size: Optional[int] = None,
|
43 |
+
rope_theta: Optional[float] = 10000.,
|
44 |
+
max_position_embeddings: Optional[int] = None,
|
45 |
+
norm_first: bool = False,
|
46 |
+
norm_eps: float = 1e-5,
|
47 |
+
layer_idx: int = None
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
self.num_heads = num_heads
|
52 |
+
if num_kv_heads is None:
|
53 |
+
self.num_kv_heads = self.num_heads
|
54 |
+
else:
|
55 |
+
self.num_kv_heads = num_kv_heads
|
56 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
57 |
+
self.hidden_size = hidden_size
|
58 |
+
self.head_dim = self.hidden_size // self.num_heads
|
59 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
60 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
61 |
+
self.window_size = window_size
|
62 |
+
self.rope_theta = rope_theta
|
63 |
+
self.max_position_embeddings = max_position_embeddings
|
64 |
+
self.norm_first = norm_first
|
65 |
+
self.layer_idx = layer_idx
|
66 |
+
|
67 |
+
if norm_first:
|
68 |
+
self.norm = RMSNorm(self.hidden_size, eps=norm_eps)
|
69 |
+
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
70 |
+
self.k_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
|
71 |
+
self.v_proj = nn.Linear(self.hidden_size, self.kv_dim, bias=False)
|
72 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
73 |
+
|
74 |
+
self.rotary = RotaryEmbedding(dim=self.head_dim, base=self.rope_theta)
|
75 |
+
|
76 |
+
def forward(
|
77 |
+
self,
|
78 |
+
hidden_states: torch.Tensor,
|
79 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
80 |
+
past_key_values: Optional[Cache] = None,
|
81 |
+
output_attentions: bool = False,
|
82 |
+
use_cache: bool = False,
|
83 |
+
**kwargs,
|
84 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
85 |
+
if attention_mask is not None:
|
86 |
+
assert len(attention_mask.shape) == 2, (
|
87 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
88 |
+
"for padding purposes (0 indicating padding). "
|
89 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
90 |
+
)
|
91 |
+
|
92 |
+
batch_size, q_len, _ = hidden_states.size()
|
93 |
+
|
94 |
+
if self.norm_first:
|
95 |
+
hidden_states = self.norm(hidden_states)
|
96 |
+
|
97 |
+
q = rearrange(self.q_proj(hidden_states), '... (h d) -> ... h d', h=self.num_heads)
|
98 |
+
k = rearrange(self.k_proj(hidden_states), '... (h d) -> ... h d', h=self.num_kv_heads)
|
99 |
+
v = rearrange(self.v_proj(hidden_states), '... (h d) -> ... h d', h=self.num_kv_heads)
|
100 |
+
|
101 |
+
seqlen_offset, max_seqlen = 0, q_len
|
102 |
+
if past_key_values is not None:
|
103 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
104 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
105 |
+
|
106 |
+
if attention_mask is not None:
|
107 |
+
# to deliminate the offsets of padding tokens
|
108 |
+
seqlen_offset = (seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]).clamp(min=0)
|
109 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
110 |
+
|
111 |
+
if self.max_position_embeddings is not None:
|
112 |
+
max_seqlen = max(max_seqlen, self.max_position_embeddings)
|
113 |
+
q, k = self.rotary(q, k, seqlen_offset, max_seqlen)
|
114 |
+
|
115 |
+
if past_key_values is not None:
|
116 |
+
k, v = past_key_values.update(
|
117 |
+
attn_state=(k.flatten(-2, -1), v.flatten(-2, -1)),
|
118 |
+
layer_idx=self.layer_idx,
|
119 |
+
offset=q_len,
|
120 |
+
cache_kwargs=dict(window_size=self.window_size)
|
121 |
+
)['attn_state']
|
122 |
+
k = rearrange(k, '... (h d) -> ... h d', h=self.num_kv_heads)
|
123 |
+
v = rearrange(v, '... (h d) -> ... h d', h=self.num_kv_heads)
|
124 |
+
|
125 |
+
if flash_attn_func is None:
|
126 |
+
raise ImportError("Please install Flash Attention via `pip install flash-attn --no-build-isolation` first")
|
127 |
+
|
128 |
+
# Contains at least one padding token in the sequence
|
129 |
+
if attention_mask is not None:
|
130 |
+
q, k, v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(q, k, v, attention_mask, q_len)
|
131 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
132 |
+
max_seqlen_q, max_seqlen_k = max_seq_lens
|
133 |
+
o = flash_attn_varlen_func(
|
134 |
+
q, k, v,
|
135 |
+
cu_seqlens_q=cu_seqlens_q,
|
136 |
+
cu_seqlens_k=cu_seqlens_k,
|
137 |
+
max_seqlen_q=max_seqlen_q,
|
138 |
+
max_seqlen_k=max_seqlen_k,
|
139 |
+
causal=True,
|
140 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
141 |
+
)
|
142 |
+
o = pad_input(o, indices_q, batch_size, q_len)
|
143 |
+
else:
|
144 |
+
o = flash_attn_func(
|
145 |
+
q, k, v,
|
146 |
+
causal=True,
|
147 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
148 |
+
)
|
149 |
+
o = o.reshape(batch_size, q_len, self.hidden_size)
|
150 |
+
o = self.o_proj(o)
|
151 |
+
|
152 |
+
if not output_attentions:
|
153 |
+
attentions = None
|
154 |
+
|
155 |
+
return o, attentions, past_key_values
|
156 |
+
|
157 |
+
def _upad_input(self, q, k, v, attention_mask, q_len):
|
158 |
+
seqlens = attention_mask.sum(-1, dtype=torch.int32)
|
159 |
+
indices_k = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
160 |
+
max_seqlen_k = seqlens.max().item()
|
161 |
+
cu_seqlens_k = F.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))
|
162 |
+
batch_size, seq_len, num_key_value_heads, head_dim = k.shape
|
163 |
+
|
164 |
+
k = index_first_axis(k.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
165 |
+
v = index_first_axis(v.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
166 |
+
if q_len == seq_len:
|
167 |
+
q = index_first_axis(q.reshape(batch_size * seq_len, self.num_heads, head_dim), indices_k)
|
168 |
+
cu_seqlens_q = cu_seqlens_k
|
169 |
+
max_seqlen_q = max_seqlen_k
|
170 |
+
indices_q = indices_k
|
171 |
+
elif q_len == 1:
|
172 |
+
max_seqlen_q = 1
|
173 |
+
# There is a memcpy here, that is very bad.
|
174 |
+
cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=q.device)
|
175 |
+
indices_q = cu_seqlens_q[:-1]
|
176 |
+
q = q.squeeze(1)
|
177 |
+
else:
|
178 |
+
# The -q_len: slice assumes left padding.
|
179 |
+
attention_mask = attention_mask[:, -q_len:]
|
180 |
+
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask)
|
181 |
+
|
182 |
+
return q, k, v, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)
|
fla/layers/based.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
"""
|
5 |
+
Linear attention in Based.
|
6 |
+
https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from fla.modules.feature_map import TaylorFeatureMap
|
14 |
+
from fla.ops.based import parallel_based
|
15 |
+
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
|
16 |
+
|
17 |
+
|
18 |
+
class BasedLinearAttention(nn.Module):
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
hidden_size: int,
|
23 |
+
feature_dim: int = 16,
|
24 |
+
num_key_value_heads: int = 12,
|
25 |
+
num_heads: int = 12,
|
26 |
+
feature_name: str = "taylor_exp",
|
27 |
+
eps: float = 1e-12,
|
28 |
+
causal: bool = True,
|
29 |
+
mode: str = "parallel",
|
30 |
+
):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.hidden_size = hidden_size
|
34 |
+
self.mode = mode
|
35 |
+
self.feature_name = feature_name
|
36 |
+
self.feature_dim = feature_dim
|
37 |
+
self.num_key_value_heads = num_key_value_heads
|
38 |
+
self.num_heads = num_heads
|
39 |
+
self.head_dim = self.hidden_size // self.num_key_value_heads
|
40 |
+
self.causal = causal
|
41 |
+
|
42 |
+
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
43 |
+
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
44 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
45 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
46 |
+
self.dropout = nn.Identity()
|
47 |
+
self.feature_map = TaylorFeatureMap(feature_dim)
|
48 |
+
self.eps = eps
|
49 |
+
|
50 |
+
self.apply(self._initialize_weights)
|
51 |
+
|
52 |
+
def _initialize_weights(self, module: nn.Module):
|
53 |
+
if getattr(module, "_is_hf_initialized", False):
|
54 |
+
return
|
55 |
+
if isinstance(module, nn.Linear):
|
56 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
57 |
+
if module.bias is not None:
|
58 |
+
nn.init.zeros_(module.bias)
|
59 |
+
module._is_hf_initialized = True
|
60 |
+
|
61 |
+
def forward(self, hidden_states: torch.Tensor, **kwargs):
|
62 |
+
mode = self.mode
|
63 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
64 |
+
q, k, v = map(lambda x: rearrange(x, "... (h d) -> ... h d", h=self.num_heads), [q, k, v])
|
65 |
+
if mode == "fused_chunk":
|
66 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
67 |
+
o = fused_chunk_linear_attn(q, k, v, normalize=True, scale=1, head_first=False)
|
68 |
+
elif mode == 'chunk':
|
69 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
70 |
+
o = chunk_linear_attn(q, k, v, normalize=True, scale=1, head_first=False)
|
71 |
+
elif mode == 'parallel':
|
72 |
+
assert q.shape[-1] <= 128
|
73 |
+
o = parallel_based(q, k, v, True, True, head_first=False)
|
74 |
+
o = self.o_proj(o)
|
75 |
+
o = self.dropout(o)
|
76 |
+
return o
|
77 |
+
|
78 |
+
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
|
79 |
+
|
80 |
+
def forward_reference(self, hidden_states: torch.Tensor, filters: torch.Tensor = None, *args, **kwargs):
|
81 |
+
"""
|
82 |
+
x (torch.Tensor): tensor of shape (b, d, t)
|
83 |
+
y (torch.Tensor): tensor of shape (b, d, t)
|
84 |
+
"""
|
85 |
+
# hidden_states = hidden_states.transpose(1, 2)
|
86 |
+
b, t, _ = hidden_states.size()
|
87 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
88 |
+
|
89 |
+
q = q.view(b, t, self.num_heads, self.feature_dim).transpose(1, 2)
|
90 |
+
k = k.view(b, t, self.num_key_value_heads, self.feature_dim).transpose(1, 2)
|
91 |
+
v = v.view(b, t, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
92 |
+
|
93 |
+
# Linear attention
|
94 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
95 |
+
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
|
96 |
+
|
97 |
+
# Compute attention
|
98 |
+
if self.causal:
|
99 |
+
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
|
100 |
+
else:
|
101 |
+
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
|
102 |
+
y = rearrange(y, 'b h t d -> b t (h d)')
|
103 |
+
y = self.o_proj(y.to(hidden_states.dtype))
|
104 |
+
y = self.dropout(y)
|
105 |
+
return y.to(hidden_states.dtype)
|
fla/layers/bitattn.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from einops import rearrange
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
from fla.modules import RMSNorm, RotaryEmbedding
|
17 |
+
from fla.modules.fused_bitlinear import FusedBitLinear
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
from fla.models.utils import Cache
|
21 |
+
|
22 |
+
try:
|
23 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
24 |
+
from flash_attn.bert_padding import (index_first_axis, pad_input,
|
25 |
+
unpad_input)
|
26 |
+
except ImportError:
|
27 |
+
warnings.warn(
|
28 |
+
"Flash Attention is not installed. Please install it via `pip install flash-attn --no-build-isolation`",
|
29 |
+
category=ImportWarning
|
30 |
+
)
|
31 |
+
flash_attn_func = None
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
class BitAttention(nn.Module):
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
hidden_size: int = 2048,
|
41 |
+
num_heads: int = 32,
|
42 |
+
num_kv_heads: Optional[int] = None,
|
43 |
+
window_size: Optional[int] = None,
|
44 |
+
rope_theta: Optional[float] = 10000.,
|
45 |
+
max_position_embeddings: Optional[int] = None,
|
46 |
+
norm_first: bool = False,
|
47 |
+
norm_eps: float = 1e-5,
|
48 |
+
layer_idx: int = None
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
|
52 |
+
self.num_heads = num_heads
|
53 |
+
if num_kv_heads is None:
|
54 |
+
self.num_kv_heads = self.num_heads
|
55 |
+
else:
|
56 |
+
self.num_kv_heads = num_kv_heads
|
57 |
+
self.num_kv_groups = num_heads // self.num_kv_heads
|
58 |
+
self.hidden_size = hidden_size
|
59 |
+
self.head_dim = self.hidden_size // self.num_heads
|
60 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
61 |
+
self.kv_dim = self.num_kv_heads * self.head_dim
|
62 |
+
self.window_size = window_size
|
63 |
+
self.rope_theta = rope_theta
|
64 |
+
self.max_position_embeddings = max_position_embeddings
|
65 |
+
self.norm_first = norm_first
|
66 |
+
self.layer_idx = layer_idx
|
67 |
+
|
68 |
+
if norm_first:
|
69 |
+
self.norm = RMSNorm(self.hidden_size, eps=norm_eps)
|
70 |
+
self.q_proj = FusedBitLinear(self.hidden_size, self.hidden_size, bias=False)
|
71 |
+
self.k_proj = FusedBitLinear(self.hidden_size, self.kv_dim, bias=False)
|
72 |
+
self.v_proj = FusedBitLinear(self.hidden_size, self.kv_dim, bias=False)
|
73 |
+
self.o_proj = FusedBitLinear(self.hidden_size, self.hidden_size, bias=False)
|
74 |
+
|
75 |
+
self.rotary = RotaryEmbedding(dim=self.head_dim, base=self.rope_theta)
|
76 |
+
|
77 |
+
def forward(
|
78 |
+
self,
|
79 |
+
hidden_states: torch.Tensor,
|
80 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
81 |
+
past_key_values: Optional[Cache] = None,
|
82 |
+
output_attentions: bool = False,
|
83 |
+
use_cache: bool = False,
|
84 |
+
**kwargs,
|
85 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
86 |
+
if attention_mask is not None:
|
87 |
+
assert len(attention_mask.shape) == 2, (
|
88 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
89 |
+
"for padding purposes (0 indicating padding). "
|
90 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
91 |
+
)
|
92 |
+
|
93 |
+
batch_size, q_len, _ = hidden_states.size()
|
94 |
+
|
95 |
+
if self.norm_first:
|
96 |
+
hidden_states = self.norm(hidden_states)
|
97 |
+
|
98 |
+
q = rearrange(self.q_proj(hidden_states), '... (h d) -> ... h d', h=self.num_heads)
|
99 |
+
k = rearrange(self.k_proj(hidden_states), '... (h d) -> ... h d', h=self.num_kv_heads)
|
100 |
+
v = rearrange(self.v_proj(hidden_states), '... (h d) -> ... h d', h=self.num_kv_heads)
|
101 |
+
|
102 |
+
seqlen_offset, max_seqlen = 0, q_len
|
103 |
+
if past_key_values is not None:
|
104 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
105 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
106 |
+
|
107 |
+
if attention_mask is not None:
|
108 |
+
# to deliminate the offsets of padding tokens
|
109 |
+
seqlen_offset = (seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]).clamp(min=0)
|
110 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
111 |
+
|
112 |
+
if self.max_position_embeddings is not None:
|
113 |
+
max_seqlen = max(max_seqlen, self.max_position_embeddings)
|
114 |
+
q, k = self.rotary(q, k, seqlen_offset, max_seqlen)
|
115 |
+
|
116 |
+
if past_key_values is not None:
|
117 |
+
k, v = past_key_values.update(
|
118 |
+
attn_state=(k.flatten(-2, -1), v.flatten(-2, -1)),
|
119 |
+
layer_idx=self.layer_idx,
|
120 |
+
offset=q_len,
|
121 |
+
cache_kwargs=dict(window_size=self.window_size)
|
122 |
+
)['attn_state']
|
123 |
+
k = rearrange(k, '... (h d) -> ... h d', h=self.num_kv_heads)
|
124 |
+
v = rearrange(v, '... (h d) -> ... h d', h=self.num_kv_heads)
|
125 |
+
|
126 |
+
if flash_attn_func is None:
|
127 |
+
raise ImportError("Please install Flash Attention via `pip install flash-attn --no-build-isolation` first")
|
128 |
+
|
129 |
+
# Contains at least one padding token in the sequence
|
130 |
+
if attention_mask is not None:
|
131 |
+
q, k, v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(q, k, v, attention_mask, q_len)
|
132 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
133 |
+
max_seqlen_q, max_seqlen_k = max_seq_lens
|
134 |
+
o = flash_attn_varlen_func(
|
135 |
+
q, k, v,
|
136 |
+
cu_seqlens_q=cu_seqlens_q,
|
137 |
+
cu_seqlens_k=cu_seqlens_k,
|
138 |
+
max_seqlen_q=max_seqlen_q,
|
139 |
+
max_seqlen_k=max_seqlen_k,
|
140 |
+
causal=True,
|
141 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
142 |
+
)
|
143 |
+
o = pad_input(o, indices_q, batch_size, q_len)
|
144 |
+
else:
|
145 |
+
o = flash_attn_func(
|
146 |
+
q, k, v,
|
147 |
+
causal=True,
|
148 |
+
window_size=(-1, -1) if self.window_size is None else (self.window_size-1, 0)
|
149 |
+
)
|
150 |
+
o = o.reshape(batch_size, q_len, self.hidden_size)
|
151 |
+
o = self.o_proj(o)
|
152 |
+
|
153 |
+
if not output_attentions:
|
154 |
+
attentions = None
|
155 |
+
|
156 |
+
return o, attentions, past_key_values
|
157 |
+
|
158 |
+
def _upad_input(self, q, k, v, attention_mask, q_len):
|
159 |
+
seqlens = attention_mask.sum(-1, dtype=torch.int32)
|
160 |
+
indices_k = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
161 |
+
max_seqlen_k = seqlens.max().item()
|
162 |
+
cu_seqlens_k = F.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))
|
163 |
+
batch_size, seq_len, num_key_value_heads, head_dim = k.shape
|
164 |
+
|
165 |
+
k = index_first_axis(k.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
166 |
+
v = index_first_axis(v.reshape(batch_size * seq_len, num_key_value_heads, head_dim), indices_k)
|
167 |
+
if q_len == seq_len:
|
168 |
+
q = index_first_axis(q.reshape(batch_size * seq_len, self.num_heads, head_dim), indices_k)
|
169 |
+
cu_seqlens_q = cu_seqlens_k
|
170 |
+
max_seqlen_q = max_seqlen_k
|
171 |
+
indices_q = indices_k
|
172 |
+
elif q_len == 1:
|
173 |
+
max_seqlen_q = 1
|
174 |
+
# There is a memcpy here, that is very bad.
|
175 |
+
cu_seqlens_q = torch.arange(batch_size + 1, dtype=torch.int32, device=q.device)
|
176 |
+
indices_q = cu_seqlens_q[:-1]
|
177 |
+
q = q.squeeze(1)
|
178 |
+
else:
|
179 |
+
# The -q_len: slice assumes left padding.
|
180 |
+
attention_mask = attention_mask[:, -q_len:]
|
181 |
+
q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, attention_mask)
|
182 |
+
|
183 |
+
return q, k, v, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)
|
fla/layers/delta_net.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
# Sect4.2 of Linear Transformers Are Secretly Fast Weight Programmers https://arxiv.org/abs/2102.11174
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from einops import rearrange
|
12 |
+
from torch.nn import functional as F
|
13 |
+
|
14 |
+
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
|
15 |
+
from fla.modules.l2norm import l2_norm
|
16 |
+
from fla.ops.delta_rule import (chunk_delta_rule, fused_chunk_delta_rule,
|
17 |
+
fused_recurrent_delta_rule)
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
from fla.models.utils import Cache
|
21 |
+
|
22 |
+
|
23 |
+
def elu_p1(x):
|
24 |
+
return (F.elu(x, 1., False) + 1.).to(x)
|
25 |
+
|
26 |
+
|
27 |
+
def sum_norm(x):
|
28 |
+
return (x / x.sum(-1, keepdim=True)).to(x)
|
29 |
+
|
30 |
+
# https://github.com/IDSIA/recurrent-fwp/blob/master/algorithmic/layers.py#L86C1-L146C1
|
31 |
+
|
32 |
+
|
33 |
+
class DeltaNet(nn.Module):
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
d_model: int = None,
|
37 |
+
hidden_size: int = 1024,
|
38 |
+
expand_k: float = 1.0,
|
39 |
+
expand_v: float = 1.0,
|
40 |
+
num_heads: int = 4,
|
41 |
+
mode: str = 'chunk',
|
42 |
+
use_beta: bool = True,
|
43 |
+
use_gate: bool = False,
|
44 |
+
use_output_norm: bool = True,
|
45 |
+
use_elu: bool = False,
|
46 |
+
use_short_conv: bool = True,
|
47 |
+
conv_size: int = 4,
|
48 |
+
conv_bias: bool = False,
|
49 |
+
layer_idx: int = None,
|
50 |
+
qk_activation: str = 'silu',
|
51 |
+
qk_norm: str = 'l2',
|
52 |
+
norm_first: bool = False,
|
53 |
+
norm_eps: float = 1e-5,
|
54 |
+
**kwargs
|
55 |
+
) -> DeltaNet:
|
56 |
+
super().__init__()
|
57 |
+
|
58 |
+
self.mode = mode
|
59 |
+
self.qk_activation = qk_activation
|
60 |
+
self.qk_norm = qk_norm
|
61 |
+
|
62 |
+
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
|
63 |
+
assert self.qk_norm in ['l2', 'sum']
|
64 |
+
|
65 |
+
if d_model is not None:
|
66 |
+
hidden_size = d_model
|
67 |
+
self.hidden_size = hidden_size
|
68 |
+
self.expand_k = expand_k
|
69 |
+
self.expand_v = expand_v
|
70 |
+
self.num_heads = num_heads
|
71 |
+
self.use_gate = use_gate
|
72 |
+
self.use_output_norm = use_output_norm
|
73 |
+
self.use_short_conv = use_short_conv
|
74 |
+
self.conv_size = conv_size
|
75 |
+
self.conv_bias = conv_bias
|
76 |
+
|
77 |
+
self.key_dim = int(hidden_size * expand_k)
|
78 |
+
self.value_dim = int(hidden_size * expand_v)
|
79 |
+
self.head_qk_dim = self.key_dim // num_heads
|
80 |
+
self.head_v_dim = self.value_dim // num_heads
|
81 |
+
self.norm_first = norm_first
|
82 |
+
self.layer_idx = layer_idx
|
83 |
+
|
84 |
+
self.silu = nn.SiLU()
|
85 |
+
|
86 |
+
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
87 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
88 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
89 |
+
|
90 |
+
if norm_first:
|
91 |
+
self.norm = RMSNorm(self.hidden_size, eps=norm_eps)
|
92 |
+
|
93 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
94 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
95 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
96 |
+
|
97 |
+
self.use_beta = use_beta
|
98 |
+
self.use_elu = use_elu
|
99 |
+
if self.use_beta:
|
100 |
+
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
101 |
+
if use_short_conv:
|
102 |
+
self.conv_size = conv_size
|
103 |
+
self.q_conv1d = ShortConvolution(
|
104 |
+
hidden_size=self.key_dim,
|
105 |
+
kernel_size=conv_size,
|
106 |
+
activation='silu' if qk_activation == 'silu' else None
|
107 |
+
)
|
108 |
+
self.k_conv1d = ShortConvolution(
|
109 |
+
hidden_size=self.key_dim,
|
110 |
+
kernel_size=conv_size,
|
111 |
+
activation='silu' if qk_activation == 'silu' else None
|
112 |
+
)
|
113 |
+
self.v_conv1d = ShortConvolution(
|
114 |
+
hidden_size=self.value_dim,
|
115 |
+
kernel_size=conv_size,
|
116 |
+
activation='silu'
|
117 |
+
)
|
118 |
+
else:
|
119 |
+
raise UserWarning(
|
120 |
+
"ShortConvolution is crucial to the performance. "
|
121 |
+
"Do not turn it off, i.e., setting `use_short_conv=False` unless you know what you are doing."
|
122 |
+
)
|
123 |
+
if use_gate:
|
124 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
125 |
+
self.o_norm = FusedRMSNormSwishGate(self.head_v_dim, eps=norm_eps)
|
126 |
+
else:
|
127 |
+
self.o_norm = RMSNorm(self.head_v_dim, eps=norm_eps)
|
128 |
+
|
129 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
130 |
+
|
131 |
+
self.apply(self._initialize_weights)
|
132 |
+
|
133 |
+
def _initialize_weights(self, module: nn.Module):
|
134 |
+
if getattr(module, "_is_hf_initialized", False):
|
135 |
+
return
|
136 |
+
if isinstance(module, nn.Linear):
|
137 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
138 |
+
if module.bias is not None:
|
139 |
+
nn.init.zeros_(module.bias)
|
140 |
+
module._is_hf_initialized = True
|
141 |
+
|
142 |
+
def forward(
|
143 |
+
self,
|
144 |
+
hidden_states: torch.Tensor,
|
145 |
+
attention_mask: Optional[torch.Tensor] = None,
|
146 |
+
past_key_values: Optional[Cache] = None,
|
147 |
+
use_cache: Optional[bool] = False,
|
148 |
+
output_attentions: Optional[bool] = False,
|
149 |
+
**kwargs
|
150 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
151 |
+
if attention_mask is not None:
|
152 |
+
assert len(attention_mask.shape) == 2, (
|
153 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
154 |
+
"for padding purposes (0 indicating padding). "
|
155 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
156 |
+
)
|
157 |
+
|
158 |
+
# change to inference mode.
|
159 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] < 64 else self.mode
|
160 |
+
|
161 |
+
if self.norm_first:
|
162 |
+
hidden_states = self.norm(hidden_states)
|
163 |
+
|
164 |
+
last_state = None
|
165 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
166 |
+
last_state = past_key_values[self.layer_idx]
|
167 |
+
|
168 |
+
if self.use_short_conv:
|
169 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
170 |
+
if last_state is not None:
|
171 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
172 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
173 |
+
q, conv_state_q = self.q_conv1d(x=self.q_proj(hidden_states),
|
174 |
+
mask=conv_mask,
|
175 |
+
cache=conv_state_q,
|
176 |
+
output_final_state=use_cache)
|
177 |
+
k, conv_state_k = self.k_conv1d(x=self.k_proj(hidden_states),
|
178 |
+
mask=conv_mask,
|
179 |
+
cache=conv_state_k,
|
180 |
+
output_final_state=use_cache)
|
181 |
+
v, conv_state_v = self.v_conv1d(x=self.v_proj(hidden_states),
|
182 |
+
mask=conv_mask,
|
183 |
+
cache=conv_state_v,
|
184 |
+
output_final_state=use_cache)
|
185 |
+
else:
|
186 |
+
q = self.q_proj(hidden_states)
|
187 |
+
k = self.k_proj(hidden_states)
|
188 |
+
v = self.silu(self.v_proj(hidden_states))
|
189 |
+
|
190 |
+
q, k, v = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', h=self.num_heads), (q, k, v))
|
191 |
+
if self.qk_activation != 'silu':
|
192 |
+
if self.qk_activation == 'relu':
|
193 |
+
q, k = q.relu(), k.relu()
|
194 |
+
elif self.qk_activation == 'elu':
|
195 |
+
q, k = elu_p1(q), elu_p1(k)
|
196 |
+
elif self.qk_activation == 'identity':
|
197 |
+
pass
|
198 |
+
else:
|
199 |
+
raise NotImplementedError
|
200 |
+
|
201 |
+
if self.qk_norm is not None:
|
202 |
+
if self.qk_norm == 'l2':
|
203 |
+
q = l2_norm(q)
|
204 |
+
k = l2_norm(k)
|
205 |
+
elif self.qk_norm == 'sum':
|
206 |
+
q = sum_norm(q).to(q)
|
207 |
+
k = sum_norm(k).to(k)
|
208 |
+
|
209 |
+
if self.use_beta:
|
210 |
+
beta = self.b_proj(hidden_states).sigmoid()
|
211 |
+
else:
|
212 |
+
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
|
213 |
+
|
214 |
+
# dealing with padding
|
215 |
+
if attention_mask is not None:
|
216 |
+
beta = beta.mul(attention_mask[:, -beta.shape[-2]:, None])
|
217 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
218 |
+
if mode == 'fused_recurrent':
|
219 |
+
o, recurrent_state = fused_recurrent_delta_rule(
|
220 |
+
q=q,
|
221 |
+
k=k,
|
222 |
+
v=v,
|
223 |
+
beta=beta,
|
224 |
+
initial_state=recurrent_state,
|
225 |
+
output_final_state=use_cache,
|
226 |
+
head_first=False
|
227 |
+
)
|
228 |
+
elif mode == 'fused_chunk':
|
229 |
+
o, recurrent_state = fused_chunk_delta_rule(
|
230 |
+
q=q,
|
231 |
+
k=k,
|
232 |
+
v=v,
|
233 |
+
beta=beta,
|
234 |
+
initial_state=recurrent_state,
|
235 |
+
output_final_state=use_cache,
|
236 |
+
head_first=False
|
237 |
+
)
|
238 |
+
elif mode == 'chunk':
|
239 |
+
o, recurrent_state = chunk_delta_rule(
|
240 |
+
q=q,
|
241 |
+
k=k,
|
242 |
+
v=v,
|
243 |
+
beta=beta,
|
244 |
+
initial_state=recurrent_state,
|
245 |
+
output_final_state=use_cache,
|
246 |
+
head_first=False
|
247 |
+
)
|
248 |
+
else:
|
249 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
250 |
+
|
251 |
+
if past_key_values is not None:
|
252 |
+
past_key_values.update(
|
253 |
+
recurrent_state=recurrent_state,
|
254 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
255 |
+
layer_idx=self.layer_idx,
|
256 |
+
offset=q.shape[2]
|
257 |
+
)
|
258 |
+
|
259 |
+
if self.use_gate:
|
260 |
+
g = rearrange(self.g_proj(hidden_states), 'b t (h d) -> b t h d', h=self.num_heads)
|
261 |
+
o = self.o_norm(o, g)
|
262 |
+
else:
|
263 |
+
o = self.o_norm(o)
|
264 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
265 |
+
o = self.o_proj(o)
|
266 |
+
|
267 |
+
return o, None, past_key_values
|
fla/layers/gla.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from einops import rearrange, repeat
|
13 |
+
|
14 |
+
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
|
15 |
+
from fla.modules.activations import ACT2FN
|
16 |
+
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
class GatedLinearAttention(nn.Module):
|
23 |
+
r"""
|
24 |
+
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
|
25 |
+
|
26 |
+
Args:
|
27 |
+
mode (str, Optional):
|
28 |
+
Which GLA kernel to use.
|
29 |
+
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
|
30 |
+
Default: `chunk`.
|
31 |
+
hidden_size (int, Optional):
|
32 |
+
The hidden size of the input. Default: 1024.
|
33 |
+
expand_k (float, Optional):
|
34 |
+
The expansion ratio for the key dim. Default: 0.5.
|
35 |
+
expand_v (float, Optional):
|
36 |
+
The expansion ratio for the value dim. Default: 1.0.
|
37 |
+
num_heads (int, Optional):
|
38 |
+
The number of heads. Default: 4.
|
39 |
+
num_kv_heads (int, Optional):
|
40 |
+
The number of key/value heads, used for MQA. Default: None.
|
41 |
+
feature_map (str, Optional):
|
42 |
+
Feature map function applied to queries/keys. Default: None.
|
43 |
+
use_short_conv (bool, Optional):
|
44 |
+
Whether to use short convolutions. Default: `False`.
|
45 |
+
conv_size (int, Optional):
|
46 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
47 |
+
conv_bias (bool, Optional):
|
48 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
49 |
+
use_output_gate (bool, Optional):
|
50 |
+
Whether to use output gate. Default: `True`.
|
51 |
+
gate_fn (str, Optional):
|
52 |
+
The activation function for the output gate. Default: `swish`.
|
53 |
+
elementwise_affine (bool, Optional):
|
54 |
+
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
55 |
+
norm_eps (float, Optional):
|
56 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
57 |
+
gate_logit_normalizer (int, Optional):
|
58 |
+
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
|
59 |
+
gate_low_rank_dim (int, Optional):
|
60 |
+
The low rank dim for the gate projection. Default: 16.
|
61 |
+
clamp_min (float, Optional):
|
62 |
+
The minimum value for the gate logits. Default: None.
|
63 |
+
fuse_norm (bool, Optional):
|
64 |
+
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
65 |
+
layer_idx (int, Optional):
|
66 |
+
The index of the layer. Default: None.
|
67 |
+
"""
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
mode: str = 'chunk',
|
72 |
+
hidden_size: int = 1024,
|
73 |
+
expand_k: float = 0.5,
|
74 |
+
expand_v: float = 1.0,
|
75 |
+
num_heads: int = 4,
|
76 |
+
num_kv_heads: Optional[int] = None,
|
77 |
+
feature_map: Optional[str] = None,
|
78 |
+
use_short_conv: bool = False,
|
79 |
+
conv_size: int = 4,
|
80 |
+
conv_bias: bool = False,
|
81 |
+
use_output_gate: bool = True,
|
82 |
+
gate_fn: str = 'swish',
|
83 |
+
elementwise_affine: Optional[bool] = True,
|
84 |
+
norm_eps: float = 1e-5,
|
85 |
+
gate_logit_normalizer: int = 16,
|
86 |
+
gate_low_rank_dim: int = 16,
|
87 |
+
clamp_min: Optional[float] = None,
|
88 |
+
fuse_norm: bool = True,
|
89 |
+
layer_idx: int = None,
|
90 |
+
) -> GatedLinearAttention:
|
91 |
+
super().__init__()
|
92 |
+
|
93 |
+
self.mode = mode
|
94 |
+
self.hidden_size = hidden_size
|
95 |
+
self.expand_k = expand_k
|
96 |
+
self.expand_v = expand_v
|
97 |
+
self.num_heads = num_heads
|
98 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
99 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
100 |
+
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
|
101 |
+
|
102 |
+
self.use_short_conv = use_short_conv
|
103 |
+
self.conv_size = conv_size
|
104 |
+
self.conv_bias = conv_bias
|
105 |
+
self.use_output_gate = use_output_gate
|
106 |
+
|
107 |
+
self.key_dim = int(hidden_size * expand_k)
|
108 |
+
self.value_dim = int(hidden_size * expand_v)
|
109 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
110 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
111 |
+
self.clamp_min = clamp_min
|
112 |
+
self.layer_idx = layer_idx
|
113 |
+
|
114 |
+
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
|
115 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
116 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
117 |
+
|
118 |
+
self.head_qk_dim = self.key_dim // num_heads
|
119 |
+
self.head_v_dim = self.value_dim // num_heads
|
120 |
+
|
121 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
122 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
123 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
124 |
+
if self.use_output_gate:
|
125 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
126 |
+
|
127 |
+
if use_short_conv:
|
128 |
+
self.conv_size = conv_size
|
129 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
130 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
131 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
132 |
+
|
133 |
+
self.gk_proj = nn.Sequential(nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
|
134 |
+
nn.Linear(gate_low_rank_dim, self.key_dim_per_group, bias=True))
|
135 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
136 |
+
|
137 |
+
if gate_fn == 'swish' and fuse_norm and use_output_gate:
|
138 |
+
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
|
139 |
+
self.fuse_norm_and_gate = True
|
140 |
+
else:
|
141 |
+
self.fuse_norm_and_gate = False
|
142 |
+
self.g_norm = RMSNorm(hidden_size=self.head_v_dim, elementwise_affine=elementwise_affine, eps=norm_eps)
|
143 |
+
self.gate_fn = ACT2FN[gate_fn]
|
144 |
+
|
145 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
146 |
+
|
147 |
+
self.apply(self._initialize_weights)
|
148 |
+
|
149 |
+
def _initialize_weights(self, module: nn.Module):
|
150 |
+
if getattr(module, "_is_hf_initialized", False):
|
151 |
+
return
|
152 |
+
if isinstance(module, nn.Linear):
|
153 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
154 |
+
if module.bias is not None:
|
155 |
+
nn.init.zeros_(module.bias)
|
156 |
+
module._is_hf_initialized = True
|
157 |
+
|
158 |
+
def forward(
|
159 |
+
self,
|
160 |
+
hidden_states: torch.Tensor,
|
161 |
+
attention_mask: Optional[torch.Tensor] = None,
|
162 |
+
past_key_values: Optional[Cache] = None,
|
163 |
+
use_cache: Optional[bool] = False,
|
164 |
+
output_attentions: Optional[bool] = False,
|
165 |
+
**kwargs
|
166 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
167 |
+
if attention_mask is not None:
|
168 |
+
assert len(attention_mask.shape) == 2, (
|
169 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
170 |
+
"for padding purposes (0 indicating padding). "
|
171 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
172 |
+
)
|
173 |
+
|
174 |
+
# launching the triton kernel for just one token will actually be slower
|
175 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
176 |
+
|
177 |
+
last_state = None
|
178 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
179 |
+
last_state = past_key_values[self.layer_idx]
|
180 |
+
if self.use_short_conv:
|
181 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
182 |
+
if last_state is not None:
|
183 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
184 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
185 |
+
q, conv_state_q = self.q_conv1d(x=self.q_proj(hidden_states),
|
186 |
+
mask=conv_mask,
|
187 |
+
cache=conv_state_q,
|
188 |
+
output_final_state=use_cache)
|
189 |
+
k, conv_state_k = self.k_conv1d(x=self.k_proj(hidden_states),
|
190 |
+
mask=conv_mask,
|
191 |
+
cache=conv_state_k,
|
192 |
+
output_final_state=use_cache)
|
193 |
+
v, conv_state_v = self.v_conv1d(x=self.v_proj(hidden_states),
|
194 |
+
mask=conv_mask,
|
195 |
+
cache=conv_state_v,
|
196 |
+
output_final_state=use_cache)
|
197 |
+
else:
|
198 |
+
q = self.q_proj(hidden_states)
|
199 |
+
k = self.k_proj(hidden_states)
|
200 |
+
v = self.v_proj(hidden_states)
|
201 |
+
gk = self.gk_proj(hidden_states)
|
202 |
+
|
203 |
+
if self.feature_map_fn is not None:
|
204 |
+
q, k = map(self.feature_map_fn, (q, k))
|
205 |
+
# dealing with left-padding
|
206 |
+
if attention_mask is not None:
|
207 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
208 |
+
q = rearrange(q, 'b t (h d) -> b t h d', h=self.num_heads)
|
209 |
+
if self.num_kv_groups > 1:
|
210 |
+
k, v, gk = (repeat(x, 'b t (h d) -> b t (h g) d', h=self.num_kv_heads, g=self.num_kv_groups) for x in (k, v, gk))
|
211 |
+
else:
|
212 |
+
k, v, gk = (rearrange(x, 'b t (h d) -> b t h d', h=self.num_kv_heads) for x in (k, v, gk))
|
213 |
+
gk = F.logsigmoid(gk) / self.gate_logit_normalizer
|
214 |
+
|
215 |
+
if self.clamp_min is not None:
|
216 |
+
gk = torch.clamp_min(gk, self.clamp_min)
|
217 |
+
|
218 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
219 |
+
if mode == 'fused_recurrent':
|
220 |
+
o, recurrent_state = fused_recurrent_gla(
|
221 |
+
q=q,
|
222 |
+
k=k,
|
223 |
+
v=v,
|
224 |
+
gk=gk,
|
225 |
+
initial_state=recurrent_state,
|
226 |
+
output_final_state=use_cache,
|
227 |
+
head_first=False
|
228 |
+
)
|
229 |
+
elif mode == 'fused_chunk':
|
230 |
+
o, recurrent_state = fused_chunk_gla(
|
231 |
+
q=q,
|
232 |
+
k=k,
|
233 |
+
v=v,
|
234 |
+
g=gk,
|
235 |
+
initial_state=recurrent_state,
|
236 |
+
output_final_state=use_cache,
|
237 |
+
head_first=False
|
238 |
+
)
|
239 |
+
elif mode == 'chunk':
|
240 |
+
o, recurrent_state = chunk_gla(
|
241 |
+
q=q,
|
242 |
+
k=k,
|
243 |
+
v=v,
|
244 |
+
g=gk,
|
245 |
+
initial_state=recurrent_state,
|
246 |
+
output_final_state=use_cache,
|
247 |
+
head_first=False
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
251 |
+
|
252 |
+
if past_key_values is not None:
|
253 |
+
past_key_values.update(
|
254 |
+
recurrent_state=recurrent_state,
|
255 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
256 |
+
layer_idx=self.layer_idx,
|
257 |
+
offset=q.shape[2]
|
258 |
+
)
|
259 |
+
|
260 |
+
if self.use_output_gate:
|
261 |
+
g = self.g_proj(hidden_states)
|
262 |
+
if self.fuse_norm_and_gate:
|
263 |
+
g = rearrange(g, 'b t (h d) -> b t h d', h=self.num_heads)
|
264 |
+
o = self.g_norm_swish_gate(o, g)
|
265 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
266 |
+
else:
|
267 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
268 |
+
o = o * self.gate_fn(g)
|
269 |
+
else:
|
270 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
271 |
+
o = self.o_proj(o)
|
272 |
+
|
273 |
+
return o, None, past_key_values
|
274 |
+
|
275 |
+
def state_size(self, **kwargs) -> int:
|
276 |
+
state_size = self.key_dim * self.head_v_dim
|
277 |
+
for module in self.children():
|
278 |
+
if isinstance(module, ShortConvolution):
|
279 |
+
state_size += module.state_size
|
280 |
+
return state_size
|
fla/layers/gsa.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
from fla.modules import RMSNorm, ShortConvolution
|
15 |
+
from fla.modules.activations import swish
|
16 |
+
from fla.modules.feature_map import (ReLUFeatureMap, SwishFeatureMap,
|
17 |
+
T2RFeatureMap)
|
18 |
+
from fla.modules.layernorm import rms_norm_linear
|
19 |
+
from fla.ops.gsa import chunk_gsa, fused_recurrent_gsa
|
20 |
+
|
21 |
+
if TYPE_CHECKING:
|
22 |
+
from fla.models.utils import Cache
|
23 |
+
|
24 |
+
|
25 |
+
class GatedSlotAttention(nn.Module):
|
26 |
+
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
mode: str = 'chunk',
|
30 |
+
hidden_size: int = 1024,
|
31 |
+
expand_k: float = 1.,
|
32 |
+
expand_v: float = 1.,
|
33 |
+
num_heads: int = 4,
|
34 |
+
num_kv_heads: Optional[int] = None,
|
35 |
+
use_short_conv: bool = False,
|
36 |
+
conv_size: int = 4,
|
37 |
+
conv_bias: bool = False,
|
38 |
+
num_slots: Optional[int] = None,
|
39 |
+
elementwise_affine: Optional[bool] = True,
|
40 |
+
norm_first: bool = True,
|
41 |
+
norm_eps: float = 1e-5,
|
42 |
+
gate_logit_normalizer: int = 8,
|
43 |
+
feature_map: str = 'swish',
|
44 |
+
use_output_gate: bool = False,
|
45 |
+
use_norm: bool = True,
|
46 |
+
layer_idx: Optional[int] = None,
|
47 |
+
scale: Optional[float] = 1.,
|
48 |
+
**kwargs
|
49 |
+
) -> GatedSlotAttention:
|
50 |
+
super().__init__()
|
51 |
+
|
52 |
+
self.mode = mode
|
53 |
+
self.hidden_size = hidden_size
|
54 |
+
self.expand_k = expand_k
|
55 |
+
self.expand_v = expand_v
|
56 |
+
self.num_heads = num_heads
|
57 |
+
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
|
58 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
59 |
+
self.key_dim = int(hidden_size * expand_k)
|
60 |
+
self.value_dim = int(hidden_size * expand_v)
|
61 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
62 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
63 |
+
self.head_k_dim = self.key_dim // self.num_heads
|
64 |
+
self.head_v_dim = self.value_dim // self.num_heads
|
65 |
+
|
66 |
+
self.use_short_conv = use_short_conv
|
67 |
+
self.conv_size = conv_size
|
68 |
+
self.conv_bias = conv_bias
|
69 |
+
|
70 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
71 |
+
|
72 |
+
self.use_output_gate = use_output_gate
|
73 |
+
self.use_norm = use_norm
|
74 |
+
self.scale = scale
|
75 |
+
|
76 |
+
if num_slots is None:
|
77 |
+
num_slots = self.head_k_dim
|
78 |
+
self.num_slots = num_slots
|
79 |
+
self.norm_first = norm_first
|
80 |
+
|
81 |
+
self.layer_idx = layer_idx
|
82 |
+
|
83 |
+
if layer_idx is None:
|
84 |
+
warnings.warn(
|
85 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
86 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
87 |
+
"when creating this class."
|
88 |
+
)
|
89 |
+
|
90 |
+
if norm_first:
|
91 |
+
self.norm = RMSNorm(self.hidden_size, eps=norm_eps)
|
92 |
+
self.register_module('feature_map', None)
|
93 |
+
if feature_map == 'swish':
|
94 |
+
self.feature_map = SwishFeatureMap()
|
95 |
+
elif feature_map == 'relu':
|
96 |
+
self.feature_map = ReLUFeatureMap()
|
97 |
+
elif feature_map == 't2r':
|
98 |
+
self.feature_map = T2RFeatureMap(self.head_k_dim, self.head_k_dim)
|
99 |
+
else:
|
100 |
+
raise NotImplementedError(f"Feature map `{feature_map}` is not supported now.")
|
101 |
+
|
102 |
+
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
103 |
+
self.k_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False)
|
104 |
+
self.v_proj = nn.Linear(self.hidden_size, self.value_dim_per_group, bias=False)
|
105 |
+
self.f_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.num_slots, bias=False)
|
106 |
+
|
107 |
+
if use_short_conv:
|
108 |
+
self.conv_size = conv_size
|
109 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
110 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
111 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
112 |
+
|
113 |
+
self.g_norm = RMSNorm(self.hidden_size, elementwise_affine, eps=norm_eps)
|
114 |
+
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
|
115 |
+
|
116 |
+
self.apply(self._initialize_weights)
|
117 |
+
|
118 |
+
def _initialize_weights(self, module: nn.Module):
|
119 |
+
if getattr(module, "_is_hf_initialized", False):
|
120 |
+
return
|
121 |
+
if isinstance(module, nn.Linear):
|
122 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
123 |
+
if module.bias is not None:
|
124 |
+
nn.init.zeros_(module.bias)
|
125 |
+
module._is_hf_initialized = True
|
126 |
+
|
127 |
+
def forward(
|
128 |
+
self,
|
129 |
+
hidden_states: torch.Tensor,
|
130 |
+
attention_mask: Optional[torch.Tensor] = None,
|
131 |
+
past_key_values: Optional[Cache] = None,
|
132 |
+
use_cache: Optional[bool] = False,
|
133 |
+
output_attentions: Optional[bool] = False,
|
134 |
+
**kwargs
|
135 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
136 |
+
if attention_mask is not None:
|
137 |
+
assert len(attention_mask.shape) == 2, (
|
138 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
139 |
+
"for padding purposes (0 indicating padding). "
|
140 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
141 |
+
)
|
142 |
+
|
143 |
+
# launching the triton kernel for just one token will actually be slower
|
144 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
145 |
+
|
146 |
+
if self.norm_first:
|
147 |
+
hidden_states = self.norm(hidden_states)
|
148 |
+
|
149 |
+
last_state = None
|
150 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
151 |
+
last_state = past_key_values[self.layer_idx]
|
152 |
+
|
153 |
+
if self.use_short_conv:
|
154 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
155 |
+
if last_state is not None:
|
156 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
157 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
158 |
+
q, conv_state_q = self.q_conv1d(x=self.q_proj(hidden_states),
|
159 |
+
mask=conv_mask,
|
160 |
+
cache=conv_state_q,
|
161 |
+
output_final_state=use_cache)
|
162 |
+
k, conv_state_k = self.k_conv1d(x=self.k_proj(hidden_states),
|
163 |
+
mask=conv_mask,
|
164 |
+
cache=conv_state_k,
|
165 |
+
output_final_state=use_cache)
|
166 |
+
v, conv_state_v = self.v_conv1d(x=self.v_proj(hidden_states),
|
167 |
+
mask=conv_mask,
|
168 |
+
cache=conv_state_v,
|
169 |
+
output_final_state=use_cache)
|
170 |
+
else:
|
171 |
+
q = self.q_proj(hidden_states)
|
172 |
+
k = self.k_proj(hidden_states)
|
173 |
+
v = self.v_proj(hidden_states)
|
174 |
+
f = self.f_proj(hidden_states)
|
175 |
+
|
176 |
+
q = rearrange(q, 'b t (h d) -> b t h d', h=self.num_heads)
|
177 |
+
k = rearrange(k, 'b t (h d) -> b t h d', h=self.num_kv_heads)
|
178 |
+
v = rearrange(v, 'b t (h d) -> b t h d', h=self.num_kv_heads)
|
179 |
+
f = rearrange(f, 'b t (h m) -> b t h m', h=self.num_kv_heads)
|
180 |
+
|
181 |
+
if self.feature_map is not None:
|
182 |
+
q, k = map(lambda x: self.feature_map(x), (q, k))
|
183 |
+
v = swish(v)
|
184 |
+
|
185 |
+
f = F.logsigmoid(f) / self.gate_logit_normalizer
|
186 |
+
s = (1 - f.exp()).to(f.dtype)
|
187 |
+
# dealing with left-padding
|
188 |
+
if attention_mask is not None:
|
189 |
+
s = s.mul_(attention_mask[:, -s.shape[1]:, None, None])
|
190 |
+
v = v.mul_(attention_mask[:, -v.shape[1]:, None, None])
|
191 |
+
|
192 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
193 |
+
if mode == 'fused_recurrent':
|
194 |
+
o, recurrent_state = fused_recurrent_gsa(
|
195 |
+
q=q,
|
196 |
+
k=k,
|
197 |
+
v=v,
|
198 |
+
s=s,
|
199 |
+
g=f,
|
200 |
+
initial_state=recurrent_state,
|
201 |
+
output_final_state=use_cache,
|
202 |
+
scale=self.scale,
|
203 |
+
head_first=False
|
204 |
+
)
|
205 |
+
elif mode == 'chunk':
|
206 |
+
o, recurrent_state = chunk_gsa(
|
207 |
+
q=q,
|
208 |
+
k=k,
|
209 |
+
v=v,
|
210 |
+
s=s,
|
211 |
+
g=f,
|
212 |
+
initial_state=recurrent_state,
|
213 |
+
output_final_state=use_cache,
|
214 |
+
scale=self.scale,
|
215 |
+
head_first=False
|
216 |
+
)
|
217 |
+
else:
|
218 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
219 |
+
|
220 |
+
if past_key_values is not None:
|
221 |
+
past_key_values.update(
|
222 |
+
recurrent_state=recurrent_state,
|
223 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
224 |
+
layer_idx=self.layer_idx,
|
225 |
+
offset=q.shape[2]
|
226 |
+
)
|
227 |
+
|
228 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
229 |
+
o = rms_norm_linear(swish(o), self.g_norm.weight, self.g_norm.bias, self.o_proj.weight, self.o_proj.bias)
|
230 |
+
return o, None, past_key_values
|
231 |
+
|
232 |
+
def state_size(self, *args, **kwargs) -> int:
|
233 |
+
return 2 * self.num_slots * self.hidden_size
|
fla/layers/hgrn.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
# "Hierarchically Gated Recurrent Neural Network for Sequence Modeling" [https://arxiv.org/abs/2311.04823]
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from fla.modules import FusedRMSNormSwishGate, ShortConvolution
|
15 |
+
from fla.modules.activations import swiglu
|
16 |
+
from fla.ops.hgrn import chunk_hgrn, fused_recurrent_hgrn
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
class HGRNAttention(nn.Module):
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
mode: str = 'chunk',
|
27 |
+
hidden_size: int = 1024,
|
28 |
+
expand_ratio: Optional[int] = 1,
|
29 |
+
use_short_conv: bool = False,
|
30 |
+
conv_size: int = 4,
|
31 |
+
conv_bias: bool = False,
|
32 |
+
elementwise_affine: Optional[bool] = True,
|
33 |
+
norm_eps: float = 1e-5,
|
34 |
+
layer_idx: int = None
|
35 |
+
) -> HGRNAttention:
|
36 |
+
super().__init__()
|
37 |
+
|
38 |
+
self.mode = mode
|
39 |
+
self.hidden_size = hidden_size
|
40 |
+
self.expand_ratio = expand_ratio
|
41 |
+
self.input_dim = int(hidden_size * expand_ratio)
|
42 |
+
|
43 |
+
self.use_short_conv = use_short_conv
|
44 |
+
self.conv_size = conv_size
|
45 |
+
self.conv_bias = conv_bias
|
46 |
+
|
47 |
+
self.layer_idx = layer_idx
|
48 |
+
|
49 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
50 |
+
|
51 |
+
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
52 |
+
self.f_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
53 |
+
self.g_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
54 |
+
|
55 |
+
if use_short_conv:
|
56 |
+
self.conv_size = conv_size
|
57 |
+
self.q_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
58 |
+
self.f_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
59 |
+
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
60 |
+
|
61 |
+
self.g_norm = FusedRMSNormSwishGate(self.input_dim, elementwise_affine, norm_eps)
|
62 |
+
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
|
63 |
+
|
64 |
+
self.apply(self._initialize_weights)
|
65 |
+
|
66 |
+
def _initialize_weights(self, module: nn.Module):
|
67 |
+
if getattr(module, "_is_hf_initialized", False):
|
68 |
+
return
|
69 |
+
if isinstance(module, nn.Linear):
|
70 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
71 |
+
if module.bias is not None:
|
72 |
+
nn.init.zeros_(module.bias)
|
73 |
+
module._is_hf_initialized = True
|
74 |
+
|
75 |
+
def forward(
|
76 |
+
self,
|
77 |
+
hidden_states: torch.Tensor,
|
78 |
+
attention_mask: Optional[torch.Tensor] = None,
|
79 |
+
past_key_values: Optional[Cache] = None,
|
80 |
+
use_cache: Optional[bool] = False,
|
81 |
+
output_attentions: Optional[bool] = False,
|
82 |
+
lower_bound: Optional[torch.Tensor] = None,
|
83 |
+
**kwargs
|
84 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
85 |
+
if attention_mask is not None:
|
86 |
+
assert len(attention_mask.shape) == 2, (
|
87 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
88 |
+
"for padding purposes (0 indicating padding). "
|
89 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
90 |
+
)
|
91 |
+
|
92 |
+
# launching the triton kernel for just one token will actually be slower
|
93 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
94 |
+
|
95 |
+
last_state = None
|
96 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
97 |
+
last_state = past_key_values[self.layer_idx]
|
98 |
+
|
99 |
+
if self.use_short_conv:
|
100 |
+
conv_state_i, conv_state_f = None, None
|
101 |
+
if last_state is not None:
|
102 |
+
conv_state_i, conv_state_f = last_state['conv_state']
|
103 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
104 |
+
i, conv_state_i = self.i_conv1d(x=self.i_proj(hidden_states),
|
105 |
+
mask=conv_mask,
|
106 |
+
cache=conv_state_i,
|
107 |
+
output_final_state=use_cache)
|
108 |
+
f, conv_state_f = self.f_conv1d(x=self.f_proj(hidden_states),
|
109 |
+
mask=conv_mask,
|
110 |
+
cache=conv_state_f,
|
111 |
+
output_final_state=use_cache)
|
112 |
+
else:
|
113 |
+
i = self.i_proj(hidden_states)
|
114 |
+
f = self.f_proj(hidden_states)
|
115 |
+
|
116 |
+
# the lower bound for the first layer is zero
|
117 |
+
if lower_bound is None or self.layer_idx == 0:
|
118 |
+
i, f = swiglu(i, 1 - f.sigmoid()), F.logsigmoid(f)
|
119 |
+
else:
|
120 |
+
g = lower_bound + (1 - lower_bound) * f.sigmoid()
|
121 |
+
i, f = swiglu(i, 1 - g), g.log()
|
122 |
+
|
123 |
+
# dealing with left-padding
|
124 |
+
if attention_mask is not None:
|
125 |
+
i = i.mul_(attention_mask[:, -i.shape[-2]:, None])
|
126 |
+
|
127 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
128 |
+
if mode == 'chunk':
|
129 |
+
o, recurrent_state = chunk_hgrn(i, f, recurrent_state, use_cache)
|
130 |
+
elif mode == 'fused_recurrent':
|
131 |
+
o, recurrent_state = fused_recurrent_hgrn(i, f, recurrent_state, use_cache)
|
132 |
+
else:
|
133 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
134 |
+
|
135 |
+
if past_key_values is not None:
|
136 |
+
past_key_values.update(
|
137 |
+
recurrent_state=recurrent_state,
|
138 |
+
conv_state=(conv_state_i, conv_state_f) if self.use_short_conv else None,
|
139 |
+
layer_idx=self.layer_idx,
|
140 |
+
offset=i.shape[2]
|
141 |
+
)
|
142 |
+
|
143 |
+
o = self.g_norm(o, self.g_proj(hidden_states))
|
144 |
+
o = self.o_proj(o)
|
145 |
+
|
146 |
+
return o, None, past_key_values
|
147 |
+
|
148 |
+
def state_size(self, **kwargs) -> int:
|
149 |
+
state_size = self.hidden_size
|
150 |
+
for module in self.children():
|
151 |
+
if isinstance(module, ShortConvolution):
|
152 |
+
state_size += module.state_size
|
153 |
+
return state_size
|
fla/layers/hgrn2.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
# "HGRN2: Gated Linear RNNs with State Expansion"[https://arxiv.org/abs/2404.07904]
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from einops import rearrange
|
14 |
+
|
15 |
+
from fla.modules import RMSNorm, ShortConvolution
|
16 |
+
from fla.modules.activations import swish
|
17 |
+
from fla.modules.layernorm import rms_norm_linear
|
18 |
+
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
|
19 |
+
|
20 |
+
if TYPE_CHECKING:
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
|
23 |
+
|
24 |
+
class HGRN2Attention(nn.Module):
|
25 |
+
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
mode: str = 'chunk',
|
29 |
+
hidden_size: int = 1024,
|
30 |
+
num_heads: Optional[int] = None,
|
31 |
+
expand_ratio: Optional[int] = 128,
|
32 |
+
use_short_conv: bool = False,
|
33 |
+
conv_size: int = 4,
|
34 |
+
conv_bias: bool = False,
|
35 |
+
elementwise_affine: Optional[bool] = True,
|
36 |
+
norm_eps: float = 1e-5,
|
37 |
+
layer_idx: int = None
|
38 |
+
) -> HGRN2Attention:
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.mode = mode
|
42 |
+
self.hidden_size = hidden_size
|
43 |
+
|
44 |
+
if expand_ratio is None and num_heads is not None:
|
45 |
+
expand_ratio = hidden_size // num_heads
|
46 |
+
elif expand_ratio is not None and num_heads is None:
|
47 |
+
num_heads = hidden_size // expand_ratio
|
48 |
+
elif expand_ratio is None and num_heads is None:
|
49 |
+
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
|
50 |
+
self.num_heads = num_heads
|
51 |
+
self.expand_ratio = expand_ratio
|
52 |
+
|
53 |
+
self.use_short_conv = use_short_conv
|
54 |
+
self.conv_size = conv_size
|
55 |
+
self.conv_bias = conv_bias
|
56 |
+
|
57 |
+
self.forget_dim = int(self.num_heads * self.expand_ratio)
|
58 |
+
self.input_dim = hidden_size
|
59 |
+
self.layer_idx = layer_idx
|
60 |
+
|
61 |
+
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
|
62 |
+
assert self.forget_dim % num_heads == 0, f"forget dim must be divisible by num_heads of {num_heads}"
|
63 |
+
assert self.input_dim % num_heads == 0, f"input dim must be divisible by num_heads of {num_heads}"
|
64 |
+
|
65 |
+
self.head_f_dim = self.expand_ratio
|
66 |
+
self.head_i_dim = self.hidden_size // num_heads
|
67 |
+
|
68 |
+
self.q_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
|
69 |
+
self.f_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
|
70 |
+
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
71 |
+
|
72 |
+
if use_short_conv:
|
73 |
+
self.conv_size = conv_size
|
74 |
+
self.q_conv1d = ShortConvolution(self.forget_dim, conv_size, activation=None)
|
75 |
+
self.f_conv1d = ShortConvolution(self.forget_dim, conv_size, activation=None)
|
76 |
+
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None)
|
77 |
+
|
78 |
+
self.g_norm = RMSNorm(hidden_size=self.hidden_size, elementwise_affine=elementwise_affine, eps=norm_eps)
|
79 |
+
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
|
80 |
+
|
81 |
+
self.apply(self._initialize_weights)
|
82 |
+
|
83 |
+
def _initialize_weights(self, module: nn.Module):
|
84 |
+
if getattr(module, "_is_hf_initialized", False):
|
85 |
+
return
|
86 |
+
if isinstance(module, nn.Linear):
|
87 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
88 |
+
if module.bias is not None:
|
89 |
+
nn.init.zeros_(module.bias)
|
90 |
+
module._is_hf_initialized = True
|
91 |
+
|
92 |
+
def forward(
|
93 |
+
self,
|
94 |
+
hidden_states: torch.Tensor,
|
95 |
+
attention_mask: Optional[torch.Tensor] = None,
|
96 |
+
past_key_values: Optional[Cache] = None,
|
97 |
+
use_cache: Optional[bool] = False,
|
98 |
+
output_attentions: Optional[bool] = False,
|
99 |
+
lower_bound: Optional[torch.Tensor] = None,
|
100 |
+
**kwargs
|
101 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
102 |
+
if attention_mask is not None:
|
103 |
+
assert len(attention_mask.shape) == 2, (
|
104 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
105 |
+
"for padding purposes (0 indicating padding). "
|
106 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
107 |
+
)
|
108 |
+
|
109 |
+
# launching the triton kernel for just one token will actually be slower
|
110 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
111 |
+
|
112 |
+
last_state = None
|
113 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
114 |
+
last_state = past_key_values[self.layer_idx]
|
115 |
+
|
116 |
+
if self.use_short_conv:
|
117 |
+
conv_state_q, conv_state_f, conv_state_i = None, None, None
|
118 |
+
if last_state is not None:
|
119 |
+
conv_state_q, conv_state_f, conv_state_i = last_state['conv_state']
|
120 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
121 |
+
q, conv_state_q = self.q_conv1d(x=self.q_proj(hidden_states),
|
122 |
+
mask=conv_mask,
|
123 |
+
cache=conv_state_q,
|
124 |
+
output_final_state=use_cache)
|
125 |
+
f, conv_state_f = self.f_conv1d(x=self.f_proj(hidden_states),
|
126 |
+
mask=conv_mask,
|
127 |
+
cache=conv_state_f,
|
128 |
+
output_final_state=use_cache)
|
129 |
+
i, conv_state_i = self.i_conv1d(x=self.i_proj(hidden_states),
|
130 |
+
mask=conv_mask,
|
131 |
+
cache=conv_state_i,
|
132 |
+
output_final_state=use_cache)
|
133 |
+
else:
|
134 |
+
q = self.q_proj(hidden_states)
|
135 |
+
f = self.f_proj(hidden_states)
|
136 |
+
i = self.i_proj(hidden_states)
|
137 |
+
|
138 |
+
# dealing with left-padding
|
139 |
+
if attention_mask is not None:
|
140 |
+
i = i.mul_(attention_mask[:, -i.shape[-2]:, None])
|
141 |
+
|
142 |
+
q = swish(q)
|
143 |
+
|
144 |
+
# improve precision
|
145 |
+
f = f.float()
|
146 |
+
|
147 |
+
# the lower bound for the first layer is zero
|
148 |
+
if lower_bound is None or self.layer_idx == 0:
|
149 |
+
k, g = 1 - f.sigmoid(), F.logsigmoid(f)
|
150 |
+
else:
|
151 |
+
g = lower_bound + (1 - lower_bound) * f.sigmoid()
|
152 |
+
k, g = 1 - g, g.log()
|
153 |
+
|
154 |
+
q, k, i, g = map(lambda x: rearrange(x, '... (h d) -> ... h d', h=self.num_heads), (q, k.to(i), i, g))
|
155 |
+
|
156 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
157 |
+
if mode == 'fused_recurrent':
|
158 |
+
o, recurrent_state = fused_recurrent_gla(
|
159 |
+
q=q,
|
160 |
+
k=k,
|
161 |
+
v=i,
|
162 |
+
gk=g,
|
163 |
+
initial_state=recurrent_state,
|
164 |
+
output_final_state=use_cache,
|
165 |
+
head_first=False
|
166 |
+
)
|
167 |
+
elif mode == 'fused_chunk':
|
168 |
+
o, recurrent_state = fused_chunk_gla(
|
169 |
+
q=q,
|
170 |
+
k=k,
|
171 |
+
v=i,
|
172 |
+
g=g,
|
173 |
+
initial_state=recurrent_state,
|
174 |
+
output_final_state=use_cache,
|
175 |
+
head_first=False
|
176 |
+
)
|
177 |
+
elif mode == 'chunk':
|
178 |
+
o, recurrent_state = chunk_gla(
|
179 |
+
q=q,
|
180 |
+
k=k,
|
181 |
+
v=i,
|
182 |
+
g=g,
|
183 |
+
initial_state=recurrent_state,
|
184 |
+
output_final_state=use_cache,
|
185 |
+
head_first=False
|
186 |
+
)
|
187 |
+
else:
|
188 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
189 |
+
|
190 |
+
if past_key_values is not None:
|
191 |
+
past_key_values.update(
|
192 |
+
recurrent_state=recurrent_state,
|
193 |
+
conv_state=(conv_state_q, conv_state_f, conv_state_i) if self.use_short_conv else None,
|
194 |
+
layer_idx=self.layer_idx,
|
195 |
+
offset=q.shape[2]
|
196 |
+
)
|
197 |
+
|
198 |
+
o = rearrange(o, '... h d -> ... (h d)')
|
199 |
+
o = rms_norm_linear(o, self.g_norm.weight, self.g_norm.bias, self.o_proj.weight, self.o_proj.bias)
|
200 |
+
return o, None, past_key_values
|
201 |
+
|
202 |
+
def state_size(self, **kwargs) -> int:
|
203 |
+
state_size = self.forget_dim * self.head_i_dim
|
204 |
+
for module in self.children():
|
205 |
+
if isinstance(module, ShortConvolution):
|
206 |
+
state_size += module.state_size
|
207 |
+
return state_size
|
fla/layers/linear_attn.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from einops import rearrange, repeat
|
9 |
+
|
10 |
+
from fla.modules import RMSNorm
|
11 |
+
from fla.modules.feature_map import (DPFPFeatureMap, HadamardFeatureMap,
|
12 |
+
HedgehogFeatureMap, T2RFeatureMap)
|
13 |
+
from fla.ops.linear_attn import (chunk_linear_attn, fused_chunk_linear_attn,
|
14 |
+
fused_recurrent_linear_attn)
|
15 |
+
|
16 |
+
|
17 |
+
class LinearAttention(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
mode: str = 'chunk',
|
21 |
+
hidden_size: str = 1024,
|
22 |
+
expand_k: int = 1.0,
|
23 |
+
expand_v: int = 1.0,
|
24 |
+
num_heads: int = 8,
|
25 |
+
num_kv_heads: Optional[int] = None,
|
26 |
+
feature_map: str = 'elementwise_product',
|
27 |
+
tie_feature_map_qk: bool = False,
|
28 |
+
output_norm: str = 'rmsnorm',
|
29 |
+
norm_q: bool = False,
|
30 |
+
norm_k: bool = False,
|
31 |
+
# standard linear attention normalization
|
32 |
+
do_feature_map_norm: bool = False,
|
33 |
+
elementwise_affine: bool = True,
|
34 |
+
norm_eps: float = 1e-5,
|
35 |
+
**kwargs
|
36 |
+
):
|
37 |
+
super().__init__()
|
38 |
+
|
39 |
+
self.hidden_size = hidden_size
|
40 |
+
self.mode = mode
|
41 |
+
self.num_heads = num_heads
|
42 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
43 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
44 |
+
self.key_dim = int(hidden_size * expand_k)
|
45 |
+
self.value_dim = int(hidden_size * expand_v)
|
46 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
47 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
48 |
+
|
49 |
+
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
50 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
51 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
52 |
+
|
53 |
+
self.head_qk_dim = self.key_dim // num_heads
|
54 |
+
self.head_v_dim = self.value_dim // num_heads
|
55 |
+
self.do_feature_map_norm = do_feature_map_norm
|
56 |
+
|
57 |
+
if feature_map == 'hedgehog':
|
58 |
+
if tie_feature_map_qk:
|
59 |
+
self.feature_map_q = self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_qk_dim)
|
60 |
+
else:
|
61 |
+
self.feature_map_q = HedgehogFeatureMap(head_dim=self.head_qk_dim)
|
62 |
+
self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_qk_dim)
|
63 |
+
|
64 |
+
elif feature_map == 't2r':
|
65 |
+
if tie_feature_map_qk:
|
66 |
+
self.feature_map_q = self.feature_map_k = T2RFeatureMap(head_dim=self.head_qk_dim)
|
67 |
+
else:
|
68 |
+
self.feature_map_q = T2RFeatureMap(head_dim=self.head_qk_dim)
|
69 |
+
self.feature_map_k = T2RFeatureMap(head_dim=self.head_qk_dim)
|
70 |
+
|
71 |
+
elif feature_map == 'elementwise_product':
|
72 |
+
if tie_feature_map_qk:
|
73 |
+
self.feature_map_q = self.feature_map_k = HadamardFeatureMap(head_dim=self.head_qk_dim)
|
74 |
+
else:
|
75 |
+
self.feature_map_q = HadamardFeatureMap(head_dim=self.head_qk_dim)
|
76 |
+
self.feature_map_k = HadamardFeatureMap(head_dim=self.head_qk_dim)
|
77 |
+
|
78 |
+
elif feature_map == 'dpfp':
|
79 |
+
self.feature_map_q = DPFPFeatureMap(head_dim=self.head_qk_dim)
|
80 |
+
self.feature_map_k = DPFPFeatureMap(head_dim=self.head_qk_dim)
|
81 |
+
|
82 |
+
elif feature_map == 'elu':
|
83 |
+
def elu(x):
|
84 |
+
return F.elu(x) + 1
|
85 |
+
self.feature_map_q = elu
|
86 |
+
self.feature_map_k = elu
|
87 |
+
|
88 |
+
elif feature_map == 'relu':
|
89 |
+
self.feature_map_q = nn.ReLU()
|
90 |
+
self.feature_map_k = nn.ReLU()
|
91 |
+
|
92 |
+
elif feature_map == 'identity':
|
93 |
+
self.feature_map_q = nn.Identity()
|
94 |
+
self.feature_map_k = nn.Identity()
|
95 |
+
else:
|
96 |
+
raise NotImplementedError(f"Not supported feature map `{feature_map}`.")
|
97 |
+
|
98 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
99 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
100 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
101 |
+
|
102 |
+
if output_norm == 'rmsnorm':
|
103 |
+
self.norm = RMSNorm(hidden_size=self.head_v_dim, elementwise_affine=elementwise_affine, eps=norm_eps)
|
104 |
+
elif output_norm == 'identity':
|
105 |
+
self.norm = nn.Identity()
|
106 |
+
else:
|
107 |
+
raise NotImplementedError(f"Not supported output norm `{output_norm}`.")
|
108 |
+
|
109 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
110 |
+
|
111 |
+
self.norm_q = norm_q
|
112 |
+
self.norm_k = norm_k
|
113 |
+
|
114 |
+
self.apply(self._initialize_weights)
|
115 |
+
|
116 |
+
def _initialize_weights(self, module: nn.Module):
|
117 |
+
if getattr(module, "_is_hf_initialized", False):
|
118 |
+
return
|
119 |
+
if isinstance(module, nn.Linear):
|
120 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
121 |
+
if module.bias is not None:
|
122 |
+
nn.init.zeros_(module.bias)
|
123 |
+
module._is_hf_initialized = True
|
124 |
+
|
125 |
+
def forward(self, x):
|
126 |
+
mode = self.mode
|
127 |
+
q = self.q_proj(x)
|
128 |
+
k = self.k_proj(x)
|
129 |
+
v = self.v_proj(x)
|
130 |
+
|
131 |
+
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
|
132 |
+
if self.num_kv_groups > 1:
|
133 |
+
k, v = (repeat(x, '... (h d) -> ... (h g) d', h=self.num_kv_heads, g=self.num_kv_groups) for x in (k, v))
|
134 |
+
else:
|
135 |
+
k, v = (rearrange(x, '... (h d) -> ... h d', h=self.num_kv_heads) for x in (k, v))
|
136 |
+
|
137 |
+
q = self.feature_map_q(q)
|
138 |
+
k = self.feature_map_k(k)
|
139 |
+
|
140 |
+
if self.norm_q:
|
141 |
+
q = q / (q.sum(-1, True) + 1e-4)
|
142 |
+
if self.norm_k:
|
143 |
+
k = k / (k.sum(-1, True) + 1e-4)
|
144 |
+
|
145 |
+
if mode == 'chunk':
|
146 |
+
o, final_state = chunk_linear_attn(
|
147 |
+
q=q,
|
148 |
+
k=k,
|
149 |
+
v=v,
|
150 |
+
normalize=self.do_feature_map_norm,
|
151 |
+
head_first=False
|
152 |
+
)
|
153 |
+
elif mode == 'fused_chunk':
|
154 |
+
o, final_state = fused_chunk_linear_attn(
|
155 |
+
q=q,
|
156 |
+
k=k,
|
157 |
+
v=v,
|
158 |
+
normalize=self.do_feature_map_norm,
|
159 |
+
)
|
160 |
+
elif mode == 'fused_recurrent':
|
161 |
+
o, final_state = fused_recurrent_linear_attn(
|
162 |
+
q=q,
|
163 |
+
k=k,
|
164 |
+
v=v,
|
165 |
+
normalize=self.do_feature_map_norm,
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
raise NotImplementedError
|
169 |
+
o = self.norm(o)
|
170 |
+
o = self.o_proj(o)
|
171 |
+
return o
|
fla/layers/multiscale_retention.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
from einops import rearrange, repeat
|
11 |
+
from transformers.activations import ACT2FN
|
12 |
+
|
13 |
+
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
|
14 |
+
from fla.modules.rotary import RotaryEmbedding
|
15 |
+
from fla.ops.retention import (chunk_retention, fused_chunk_retention,
|
16 |
+
fused_recurrent_retention, parallel_retention)
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
class MultiScaleRetention(nn.Module):
|
23 |
+
r"""
|
24 |
+
The layer implementaion for [Retentive Network: A Successor to Transformer for Large Language Models](https://arxiv.org/pdf/2307.08621.pdf). # noqa
|
25 |
+
|
26 |
+
Args:
|
27 |
+
mode (str, Optional):
|
28 |
+
Which Retention kernel to use.
|
29 |
+
Currently available: `chunk`, `fused_recurrent`, `parallel`, and `fused_chunk`.
|
30 |
+
Default: `fused_chunk`.
|
31 |
+
hidden_size (int, Optional):
|
32 |
+
The hidden size of the input. Default: 1024.
|
33 |
+
expand_k (float, Optional):
|
34 |
+
The expansion ratio for the key dim. Default: 1.0.
|
35 |
+
expand_v (float, Optional):
|
36 |
+
The expansion ratio for the value dim. Default: 2.0.
|
37 |
+
num_heads (int, Optional):
|
38 |
+
The number of heads. Default: 8.
|
39 |
+
num_kv_heads (int, Optional):
|
40 |
+
The number of key/value heads, used for MQA. Default: None.
|
41 |
+
feature_map (str, Optional):
|
42 |
+
Feature map function applied to queries/keys. Default: None.
|
43 |
+
use_short_conv (bool, Optional):
|
44 |
+
Whether to use short convolutions. Default: `False`.
|
45 |
+
conv_size (int, Optional):
|
46 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
47 |
+
conv_bias (bool, Optional):
|
48 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
49 |
+
use_output_gate (bool, Optional):
|
50 |
+
Whether to use output gate. Default: `True`.
|
51 |
+
gate_fn (str, Optional):
|
52 |
+
The activation function for the output gate. Default: `swish`.
|
53 |
+
elementwise_affine (bool, Optional):
|
54 |
+
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
55 |
+
norm_eps (float, Optional):
|
56 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
57 |
+
fuse_norm (bool, Optional):
|
58 |
+
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
59 |
+
layer_idx (int, Optional):
|
60 |
+
The index of the layer. Default: None.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
mode: str = 'chunk',
|
66 |
+
hidden_size: int = 1024,
|
67 |
+
expand_k: float = 1.0,
|
68 |
+
expand_v: float = 2.0,
|
69 |
+
num_heads: int = 8,
|
70 |
+
num_kv_heads: Optional[int] = None,
|
71 |
+
feature_map: Optional[str] = None,
|
72 |
+
use_short_conv: bool = False,
|
73 |
+
conv_size: int = 4,
|
74 |
+
conv_bias: bool = False,
|
75 |
+
use_output_gate: bool = True,
|
76 |
+
gate_fn: str = 'swish',
|
77 |
+
elementwise_affine: Optional[bool] = True,
|
78 |
+
norm_eps: float = 1e-5,
|
79 |
+
fuse_norm: bool = True,
|
80 |
+
layer_idx: int = None,
|
81 |
+
**kwargs
|
82 |
+
) -> MultiScaleRetention:
|
83 |
+
super().__init__()
|
84 |
+
|
85 |
+
self.mode = mode
|
86 |
+
self.hidden_size = hidden_size
|
87 |
+
self.expand_k = expand_k
|
88 |
+
self.expand_v = expand_v
|
89 |
+
self.num_heads = num_heads
|
90 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
91 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
92 |
+
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
|
93 |
+
|
94 |
+
self.use_short_conv = use_short_conv
|
95 |
+
self.conv_size = conv_size
|
96 |
+
self.conv_bias = conv_bias
|
97 |
+
self.use_output_gate = use_output_gate
|
98 |
+
|
99 |
+
self.key_dim = int(hidden_size * expand_k)
|
100 |
+
self.value_dim = int(hidden_size * expand_v)
|
101 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
102 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
103 |
+
self.layer_idx = layer_idx
|
104 |
+
|
105 |
+
assert mode in ['chunk', 'fused_chunk', 'parallel', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
106 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
107 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
108 |
+
|
109 |
+
self.head_qk_dim = self.key_dim // num_heads
|
110 |
+
self.head_v_dim = self.value_dim // num_heads
|
111 |
+
|
112 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
113 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
114 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
115 |
+
if self.use_output_gate:
|
116 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
117 |
+
|
118 |
+
if use_short_conv:
|
119 |
+
self.conv_size = conv_size
|
120 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
121 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
122 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
123 |
+
|
124 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
125 |
+
|
126 |
+
if gate_fn == 'swish' and fuse_norm and use_output_gate:
|
127 |
+
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
|
128 |
+
self.fuse_norm_and_gate = True
|
129 |
+
else:
|
130 |
+
self.fuse_norm_and_gate = False
|
131 |
+
self.g_norm = RMSNorm(hidden_size=self.head_v_dim, elementwise_affine=elementwise_affine, eps=norm_eps)
|
132 |
+
self.gate_fn = ACT2FN[gate_fn]
|
133 |
+
|
134 |
+
# TODO: fix this issue
|
135 |
+
# https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/rotary.py#L180
|
136 |
+
# Ideally, we would want to support arbitrary d_head_qk
|
137 |
+
assert self.head_qk_dim <= 256, "head_qk_dim must be less than or equal to 256"
|
138 |
+
self.rotary = RotaryEmbedding(dim=self.head_qk_dim)
|
139 |
+
|
140 |
+
self.apply(self._initialize_weights)
|
141 |
+
|
142 |
+
def _initialize_weights(self, module: nn.Module):
|
143 |
+
if getattr(module, "_is_hf_initialized", False):
|
144 |
+
return
|
145 |
+
if isinstance(module, nn.Linear):
|
146 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
147 |
+
if module.bias is not None:
|
148 |
+
nn.init.zeros_(module.bias)
|
149 |
+
module._is_hf_initialized = True
|
150 |
+
|
151 |
+
def forward(
|
152 |
+
self,
|
153 |
+
hidden_states: torch.Tensor,
|
154 |
+
attention_mask: Optional[torch.Tensor] = None,
|
155 |
+
past_key_values: Optional[Cache] = None,
|
156 |
+
use_cache: Optional[bool] = False,
|
157 |
+
output_attentions: Optional[bool] = False,
|
158 |
+
**kwargs
|
159 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
160 |
+
if attention_mask is not None:
|
161 |
+
assert len(attention_mask.shape) == 2, (
|
162 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
163 |
+
"for padding purposes (0 indicating padding). "
|
164 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
165 |
+
)
|
166 |
+
|
167 |
+
# launching the triton kernel for just one token will actually be slower
|
168 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
169 |
+
|
170 |
+
last_state = None
|
171 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
172 |
+
last_state = past_key_values[self.layer_idx]
|
173 |
+
|
174 |
+
if self.use_short_conv:
|
175 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
176 |
+
if last_state is not None:
|
177 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
178 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
179 |
+
q, conv_state_q = self.q_conv1d(x=self.q_proj(hidden_states),
|
180 |
+
mask=conv_mask,
|
181 |
+
cache=conv_state_q,
|
182 |
+
output_final_state=use_cache)
|
183 |
+
k, conv_state_k = self.k_conv1d(x=self.k_proj(hidden_states),
|
184 |
+
mask=conv_mask,
|
185 |
+
cache=conv_state_k,
|
186 |
+
output_final_state=use_cache)
|
187 |
+
v, conv_state_v = self.v_conv1d(x=self.v_proj(hidden_states),
|
188 |
+
mask=conv_mask,
|
189 |
+
cache=conv_state_v,
|
190 |
+
output_final_state=use_cache)
|
191 |
+
else:
|
192 |
+
q = self.q_proj(hidden_states)
|
193 |
+
k = self.k_proj(hidden_states)
|
194 |
+
v = self.v_proj(hidden_states)
|
195 |
+
|
196 |
+
# dealing with left-padding
|
197 |
+
if attention_mask is not None:
|
198 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
199 |
+
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
|
200 |
+
k = rearrange(k, '... (h d) -> ... h d', h=self.num_kv_heads)
|
201 |
+
if self.feature_map_fn is not None:
|
202 |
+
q, k = map(self.feature_map_fn, (q, k))
|
203 |
+
|
204 |
+
seqlen_offset, max_seqlen = 0, q.shape[1]
|
205 |
+
if past_key_values is not None:
|
206 |
+
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
207 |
+
max_seqlen = q.shape[1] + seqlen_offset
|
208 |
+
|
209 |
+
if attention_mask is not None:
|
210 |
+
# to deliminate the offsets of padding tokens
|
211 |
+
seqlen_offset = (seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]).clamp(min=0)
|
212 |
+
max_seqlen = q.shape[1] + max(seqlen_offset)
|
213 |
+
|
214 |
+
q, k = self.rotary(q, k, seqlen_offset, max_seqlen)
|
215 |
+
if self.num_kv_groups > 1:
|
216 |
+
k = repeat(k, 'b t h d -> b t (h g) d', h=self.num_kv_heads, g=self.num_kv_groups)
|
217 |
+
v = repeat(v, 'b t (h d) -> b t (h g) d', h=self.num_kv_heads, g=self.num_kv_groups)
|
218 |
+
else:
|
219 |
+
k, v = rearrange(k, 'b t h d -> b t h d'), rearrange(v, 'b t (h d) -> b t h d', h=self.num_kv_heads)
|
220 |
+
|
221 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
222 |
+
if mode == 'chunk':
|
223 |
+
o, recurrent_state = chunk_retention(
|
224 |
+
q=q,
|
225 |
+
k=k,
|
226 |
+
v=v,
|
227 |
+
initial_state=recurrent_state,
|
228 |
+
output_final_state=use_cache,
|
229 |
+
head_first=False
|
230 |
+
)
|
231 |
+
elif mode == 'fused_chunk':
|
232 |
+
o, recurrent_state = fused_chunk_retention(
|
233 |
+
q=q,
|
234 |
+
k=k,
|
235 |
+
v=v,
|
236 |
+
initial_state=recurrent_state,
|
237 |
+
output_final_state=use_cache,
|
238 |
+
head_first=False
|
239 |
+
)
|
240 |
+
elif mode == 'parallel':
|
241 |
+
o, recurrent_state = parallel_retention(q, k, v, head_first=False)
|
242 |
+
elif mode == 'fused_recurrent':
|
243 |
+
o, recurrent_state = fused_recurrent_retention(
|
244 |
+
q=q,
|
245 |
+
k=k,
|
246 |
+
v=v,
|
247 |
+
initial_state=recurrent_state,
|
248 |
+
output_final_state=use_cache,
|
249 |
+
head_first=False
|
250 |
+
)
|
251 |
+
else:
|
252 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
253 |
+
|
254 |
+
if past_key_values is not None:
|
255 |
+
past_key_values.update(
|
256 |
+
recurrent_state=recurrent_state,
|
257 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
258 |
+
layer_idx=self.layer_idx,
|
259 |
+
offset=q.shape[2]
|
260 |
+
)
|
261 |
+
|
262 |
+
if self.use_output_gate:
|
263 |
+
g = self.g_proj(hidden_states)
|
264 |
+
if self.fuse_norm_and_gate:
|
265 |
+
g = rearrange(g, 'b t (h d) -> b t h d', h=self.num_heads)
|
266 |
+
o = self.g_norm_swish_gate(o, g)
|
267 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
268 |
+
else:
|
269 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
270 |
+
o = o * self.gate_fn(g)
|
271 |
+
else:
|
272 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
273 |
+
o = self.o_proj(o)
|
274 |
+
|
275 |
+
return o, None, past_key_values
|
276 |
+
|
277 |
+
def state_size(self, **kwargs) -> int:
|
278 |
+
state_size = self.key_dim * self.head_v_dim
|
279 |
+
for module in self.children():
|
280 |
+
if isinstance(module, ShortConvolution):
|
281 |
+
state_size += module.state_size
|
282 |
+
return state_size
|
fla/layers/rebased.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
"""
|
5 |
+
https://github.com/corl-team/rebased/blob/main/flash_linear_attention/fla/layers/rebased_fast.py
|
6 |
+
"""
|
7 |
+
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from einops import rearrange
|
15 |
+
|
16 |
+
from fla.modules.feature_map import RebasedFeatureMap
|
17 |
+
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
|
18 |
+
from fla.ops.rebased import parallel_rebased
|
19 |
+
|
20 |
+
|
21 |
+
class ReBasedLinearAttention(nn.Module):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
hidden_size: int,
|
25 |
+
l_max: int = 2048,
|
26 |
+
feature_dim: int = 16,
|
27 |
+
num_key_value_heads: int = 16,
|
28 |
+
num_heads: int = 16,
|
29 |
+
use_gamma: Optional[bool] = True,
|
30 |
+
use_beta: Optional[bool] = True,
|
31 |
+
normalize: Optional[bool] = True,
|
32 |
+
causal: bool = True,
|
33 |
+
eps: float = 1e-5,
|
34 |
+
mode: str = "parallel",
|
35 |
+
layer_idx: Optional[int] = None,
|
36 |
+
**kwargs
|
37 |
+
) -> ReBasedLinearAttention:
|
38 |
+
super().__init__()
|
39 |
+
self.hidden_size = hidden_size
|
40 |
+
self.l_max = l_max
|
41 |
+
self.mode = mode
|
42 |
+
assert self.mode in ["fused_chunk", "parallel", 'chunk']
|
43 |
+
|
44 |
+
# linear attention
|
45 |
+
self.feature_dim = feature_dim
|
46 |
+
self.num_key_value_heads = num_key_value_heads
|
47 |
+
self.num_heads = num_heads
|
48 |
+
self.head_dim = self.hidden_size // self.num_key_value_heads
|
49 |
+
self.use_gamma = use_gamma
|
50 |
+
self.use_beta = use_beta
|
51 |
+
self.normalize = normalize
|
52 |
+
self.causal = causal
|
53 |
+
|
54 |
+
self.feature_map = RebasedFeatureMap(self.feature_dim, use_gamma, use_beta, normalize)
|
55 |
+
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
56 |
+
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
57 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
58 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
59 |
+
self.dropout = nn.Identity()
|
60 |
+
self.eps = eps
|
61 |
+
|
62 |
+
self.apply(self._initialize_weights)
|
63 |
+
|
64 |
+
def _initialize_weights(self, module: nn.Module):
|
65 |
+
if getattr(module, "_is_hf_initialized", False):
|
66 |
+
return
|
67 |
+
if isinstance(module, nn.Linear):
|
68 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
69 |
+
if module.bias is not None:
|
70 |
+
nn.init.zeros_(module.bias)
|
71 |
+
module._is_hf_initialized = True
|
72 |
+
|
73 |
+
def forward(self, hidden_states: torch.Tensor, **kwargs):
|
74 |
+
mode = self.mode
|
75 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
76 |
+
q, k, v = map(lambda x: rearrange(x, "... (h d) -> ... h d", h=self.num_heads), [q, k, v])
|
77 |
+
q, k = self.feature_map(q, flatten=(mode != 'parallel')), self.feature_map(k, flatten=(mode != 'parallel'))
|
78 |
+
if mode == "fused_chunk":
|
79 |
+
o = fused_chunk_linear_attn(
|
80 |
+
q=q,
|
81 |
+
k=k,
|
82 |
+
v=v,
|
83 |
+
normalize=True,
|
84 |
+
scale=1,
|
85 |
+
head_first=False
|
86 |
+
)
|
87 |
+
elif mode == 'chunk':
|
88 |
+
o = chunk_linear_attn(
|
89 |
+
q=q,
|
90 |
+
k=k,
|
91 |
+
v=v,
|
92 |
+
normalize=True,
|
93 |
+
scale=1,
|
94 |
+
head_first=False
|
95 |
+
)
|
96 |
+
elif mode == 'parallel':
|
97 |
+
assert q.shape[-1] <= 128
|
98 |
+
o = parallel_rebased(
|
99 |
+
q=q,
|
100 |
+
k=k,
|
101 |
+
v=v,
|
102 |
+
eps=self.eps,
|
103 |
+
use_scale=True,
|
104 |
+
use_normalize=True,
|
105 |
+
head_first=False
|
106 |
+
)
|
107 |
+
o = self.o_proj(o)
|
108 |
+
o = self.dropout(o)
|
109 |
+
return o
|
110 |
+
|
111 |
+
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
|
112 |
+
def forward_reference(self, hidden_states: torch.Tensor, filters: torch.Tensor = None, *args, **kwargs):
|
113 |
+
"""
|
114 |
+
x (torch.Tensor): tensor of shape (b, d, t)
|
115 |
+
y (torch.Tensor): tensor of shape (b, d, t)
|
116 |
+
"""
|
117 |
+
b, t, _ = hidden_states.size()
|
118 |
+
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
119 |
+
|
120 |
+
q = q.view(b, t, self.num_heads, self.feature_dim).transpose(1, 2)
|
121 |
+
k = k.view(b, t, self.num_key_value_heads, self.feature_dim).transpose(1, 2)
|
122 |
+
v = v.view(b, t, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
123 |
+
|
124 |
+
# Linear attention
|
125 |
+
q, k = self.feature_map(q), self.feature_map(k)
|
126 |
+
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
|
127 |
+
|
128 |
+
# Compute attention
|
129 |
+
if self.causal:
|
130 |
+
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
|
131 |
+
else:
|
132 |
+
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
|
133 |
+
y = rearrange(y, 'b h t d -> b t (h d)')
|
134 |
+
y = self.o_proj(y.to(hidden_states.dtype))
|
135 |
+
y = self.dropout(y)
|
136 |
+
return y.to(hidden_states.dtype)
|
fla/layers/rwkv6.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
# "Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence"[https://arxiv.org/abs/2404.05892]
|
5 |
+
|
6 |
+
from __future__ import annotations
|
7 |
+
|
8 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
from fla.modules import GroupNorm
|
15 |
+
from fla.modules.activations import ACT2FN
|
16 |
+
from fla.ops.rwkv6 import chunk_rwkv6, fused_recurrent_rwkv6
|
17 |
+
|
18 |
+
if TYPE_CHECKING:
|
19 |
+
from fla.models.utils import Cache
|
20 |
+
|
21 |
+
|
22 |
+
class RWKV6Attention(nn.Module):
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
mode: str = 'chunk',
|
27 |
+
hidden_size: int = 1024,
|
28 |
+
expand_k: float = 0.5,
|
29 |
+
expand_v: float = 1.0,
|
30 |
+
num_heads: int = 4,
|
31 |
+
gate_fn: str = 'swish',
|
32 |
+
proj_low_rank_dim: int = 32,
|
33 |
+
gate_low_rank_dim: int = 64,
|
34 |
+
fuse_norm: bool = True,
|
35 |
+
elementwise_affine: Optional[bool] = True,
|
36 |
+
norm_eps: float = 1e-5,
|
37 |
+
layer_idx: int = None,
|
38 |
+
**kwargs
|
39 |
+
) -> RWKV6Attention:
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
self.mode = mode
|
43 |
+
self.hidden_size = hidden_size
|
44 |
+
self.expand_k = expand_k
|
45 |
+
self.expand_v = expand_v
|
46 |
+
self.num_heads = num_heads
|
47 |
+
self.proj_low_rank_dim = proj_low_rank_dim
|
48 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
49 |
+
|
50 |
+
self.key_dim = int(hidden_size * expand_k)
|
51 |
+
self.value_dim = int(hidden_size * expand_v)
|
52 |
+
self.layer_idx = layer_idx
|
53 |
+
|
54 |
+
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
55 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
56 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
57 |
+
|
58 |
+
self.head_qk_dim = self.key_dim // num_heads
|
59 |
+
self.head_v_dim = self.value_dim // num_heads
|
60 |
+
|
61 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
62 |
+
self.x_proj = nn.Sequential(
|
63 |
+
LerpLinear(hidden_size, proj_low_rank_dim * 5),
|
64 |
+
nn.Tanh(),
|
65 |
+
nn.Linear(proj_low_rank_dim * 5, hidden_size, bias=False)
|
66 |
+
)
|
67 |
+
self.x_bias = nn.Parameter(torch.zeros(5, hidden_size))
|
68 |
+
|
69 |
+
self.r_proj = DDLerpLinear(hidden_size, self.key_dim)
|
70 |
+
self.w_proj = DDLerpLinear(hidden_size, self.key_dim, low_rank_dim=gate_low_rank_dim)
|
71 |
+
self.k_proj = DDLerpLinear(hidden_size, self.key_dim)
|
72 |
+
self.v_proj = DDLerpLinear(hidden_size, self.value_dim)
|
73 |
+
self.g_proj = DDLerpLinear(hidden_size, self.value_dim)
|
74 |
+
self.bonus = nn.Parameter(torch.zeros(num_heads, self.head_qk_dim))
|
75 |
+
|
76 |
+
# TODO: fuse GroupNorm and output gate
|
77 |
+
self.g_norm = GroupNorm(self.num_heads, self.value_dim, elementwise_affine=elementwise_affine, bias=True, eps=norm_eps)
|
78 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
79 |
+
self.gate_fn = ACT2FN[gate_fn]
|
80 |
+
|
81 |
+
self.apply(self._initialize_weights)
|
82 |
+
|
83 |
+
def _initialize_weights(self, module: nn.Module):
|
84 |
+
if getattr(module, "_is_hf_initialized", False):
|
85 |
+
return
|
86 |
+
if isinstance(module, nn.Linear):
|
87 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
88 |
+
if module.bias is not None:
|
89 |
+
nn.init.zeros_(module.bias)
|
90 |
+
if isinstance(module, nn.Parameter):
|
91 |
+
nn.init.xavier_uniform_(module, gain=2 ** -2.5)
|
92 |
+
module._is_hf_initialized = True
|
93 |
+
|
94 |
+
def forward(
|
95 |
+
self,
|
96 |
+
hidden_states: torch.Tensor,
|
97 |
+
attention_mask: Optional[torch.Tensor] = None,
|
98 |
+
past_key_values: Optional[Cache] = None,
|
99 |
+
use_cache: Optional[bool] = False,
|
100 |
+
output_attentions: Optional[bool] = False,
|
101 |
+
**kwargs
|
102 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
103 |
+
if attention_mask is not None:
|
104 |
+
assert len(attention_mask.shape) == 2, (
|
105 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
106 |
+
"for padding purposes (0 indicating padding). "
|
107 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
108 |
+
)
|
109 |
+
|
110 |
+
batch_size, seq_len, hidden_size = hidden_states.shape
|
111 |
+
# launching the triton kernel for just one token will actually be slower
|
112 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
113 |
+
|
114 |
+
last_state = None
|
115 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
116 |
+
last_state = past_key_values[self.layer_idx]
|
117 |
+
|
118 |
+
if attention_mask is not None:
|
119 |
+
hidden_states = hidden_states.mul_(attention_mask[:, -hidden_states.shape[-2]:, None])
|
120 |
+
if hidden_states.shape[1] == 1 and last_state is not None:
|
121 |
+
shifted = last_state['conv_state'].unsqueeze(1)
|
122 |
+
else:
|
123 |
+
shifted = self.time_shift(hidden_states)
|
124 |
+
if last_state is not None:
|
125 |
+
shifted[:, 0] = last_state['conv_state'][0]
|
126 |
+
|
127 |
+
delta = shifted - hidden_states
|
128 |
+
x = self.x_proj[0](hidden_states, delta).view(batch_size, seq_len, -1, self.proj_low_rank_dim)
|
129 |
+
x = torch.einsum('b t n r, h n r-> b t n h', self.x_proj[1](x), self.x_proj[2].weight.view(hidden_size, 5, -1))
|
130 |
+
|
131 |
+
r, w, k, v, g = x.add_(self.x_bias).unbind(-2)
|
132 |
+
r = self.r_proj(hidden_states, r, delta)
|
133 |
+
w = self.w_proj(hidden_states, w, delta)
|
134 |
+
k = self.k_proj(hidden_states, k, delta)
|
135 |
+
v = self.v_proj(hidden_states, v, delta)
|
136 |
+
g = self.g_proj(hidden_states, g, delta)
|
137 |
+
|
138 |
+
# dealing with left-padding
|
139 |
+
if attention_mask is not None:
|
140 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
141 |
+
r, w, k, v = map(lambda x: rearrange(x, 'b t (h d) -> b t h d', h=self.num_heads), (r, w, k, v))
|
142 |
+
w = -torch.exp(w)
|
143 |
+
u = self.bonus
|
144 |
+
|
145 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
146 |
+
if mode == 'fused_recurrent':
|
147 |
+
o, recurrent_state = fused_recurrent_rwkv6(
|
148 |
+
r=r,
|
149 |
+
k=k,
|
150 |
+
v=v,
|
151 |
+
w=w,
|
152 |
+
u=u,
|
153 |
+
scale=1.,
|
154 |
+
initial_state=recurrent_state,
|
155 |
+
output_final_state=use_cache,
|
156 |
+
head_first=False
|
157 |
+
)
|
158 |
+
elif mode == 'chunk':
|
159 |
+
o, recurrent_state = chunk_rwkv6(
|
160 |
+
q=r,
|
161 |
+
k=k,
|
162 |
+
v=v,
|
163 |
+
g=w,
|
164 |
+
u=u,
|
165 |
+
scale=1.,
|
166 |
+
initial_state=recurrent_state,
|
167 |
+
output_final_state=use_cache,
|
168 |
+
head_first=False
|
169 |
+
)
|
170 |
+
else:
|
171 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
172 |
+
|
173 |
+
if past_key_values is not None:
|
174 |
+
past_key_values.update(
|
175 |
+
recurrent_state=recurrent_state,
|
176 |
+
conv_state=hidden_states[:, -1],
|
177 |
+
layer_idx=self.layer_idx,
|
178 |
+
offset=r.shape[2]
|
179 |
+
)
|
180 |
+
|
181 |
+
o = self.g_norm(rearrange(o, '... h d -> ... (h d)')) * self.gate_fn(g)
|
182 |
+
o = self.o_proj(o)
|
183 |
+
|
184 |
+
return o, None, past_key_values
|
185 |
+
|
186 |
+
|
187 |
+
class LoRA(nn.Module):
|
188 |
+
|
189 |
+
def __init__(
|
190 |
+
self,
|
191 |
+
input_dim: int,
|
192 |
+
output_dim: int,
|
193 |
+
low_rank_dim: int,
|
194 |
+
bias: Optional[bool] = True
|
195 |
+
):
|
196 |
+
super().__init__()
|
197 |
+
|
198 |
+
self.input_dim = input_dim
|
199 |
+
self.output_dim = output_dim
|
200 |
+
self.low_rank_dim = low_rank_dim
|
201 |
+
self.bias = bias
|
202 |
+
|
203 |
+
self.lora = nn.Sequential(
|
204 |
+
nn.Linear(input_dim, low_rank_dim, bias=False),
|
205 |
+
nn.Tanh(),
|
206 |
+
nn.Linear(low_rank_dim, output_dim, bias=bias)
|
207 |
+
)
|
208 |
+
|
209 |
+
def __repr__(self) -> str:
|
210 |
+
s = f"{self.__class__.__name__}("
|
211 |
+
s += f"input_dim={self.input_dim}, low_rank_dim={self.low_rank_dim}, output_dim={self.output_dim}"
|
212 |
+
if not self.bias:
|
213 |
+
s += f", bias={self.bias}"
|
214 |
+
s += ")"
|
215 |
+
return s
|
216 |
+
|
217 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
218 |
+
return self.lora(x)
|
219 |
+
|
220 |
+
|
221 |
+
class LerpLinear(nn.Module):
|
222 |
+
|
223 |
+
def __init__(
|
224 |
+
self,
|
225 |
+
input_dim: int,
|
226 |
+
output_dim: int,
|
227 |
+
low_rank_dim: Optional[int] = None
|
228 |
+
):
|
229 |
+
super().__init__()
|
230 |
+
|
231 |
+
self.input_dim = input_dim
|
232 |
+
self.output_dim = output_dim
|
233 |
+
self.low_rank_dim = low_rank_dim
|
234 |
+
|
235 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
236 |
+
if low_rank_dim is None:
|
237 |
+
self.linear = nn.Linear(input_dim, output_dim, bias=False)
|
238 |
+
else:
|
239 |
+
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
|
240 |
+
self.mu = nn.Parameter(torch.zeros(input_dim))
|
241 |
+
|
242 |
+
def __repr__(self) -> str:
|
243 |
+
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
|
244 |
+
if self.low_rank_dim is not None:
|
245 |
+
s += f", low_rank_dim={self.low_rank_dim}"
|
246 |
+
s += ")"
|
247 |
+
return s
|
248 |
+
|
249 |
+
def forward(self, x: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
|
250 |
+
if delta is None:
|
251 |
+
shifted = self.time_shift(x)
|
252 |
+
if len(shifted.shape) == 2:
|
253 |
+
shifted = shifted.unsqueeze(1)
|
254 |
+
delta = shifted - x
|
255 |
+
return self.linear(x + delta * self.mu)
|
256 |
+
|
257 |
+
|
258 |
+
class DDLerpLinear(nn.Module):
|
259 |
+
|
260 |
+
def __init__(
|
261 |
+
self,
|
262 |
+
input_dim: int,
|
263 |
+
output_dim: int,
|
264 |
+
low_rank_dim: Optional[int] = None
|
265 |
+
):
|
266 |
+
super().__init__()
|
267 |
+
|
268 |
+
self.input_dim = input_dim
|
269 |
+
self.output_dim = output_dim
|
270 |
+
self.low_rank_dim = low_rank_dim
|
271 |
+
|
272 |
+
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
273 |
+
if low_rank_dim is None:
|
274 |
+
self.linear = nn.Linear(input_dim, output_dim, bias=False)
|
275 |
+
else:
|
276 |
+
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
|
277 |
+
|
278 |
+
def __repr__(self) -> str:
|
279 |
+
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
|
280 |
+
if self.low_rank_dim is not None:
|
281 |
+
s += f", low_rank_dim={self.low_rank_dim}"
|
282 |
+
s += ")"
|
283 |
+
return s
|
284 |
+
|
285 |
+
def forward(self, x: torch.Tensor, mu: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
|
286 |
+
if delta is None:
|
287 |
+
shifted = self.time_shift(x)
|
288 |
+
if len(shifted.shape) == 2:
|
289 |
+
shifted = shifted.unsqueeze(1)
|
290 |
+
delta = shifted - x
|
291 |
+
return self.linear(x + delta * mu)
|
fla/layers/scan.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from einops import rearrange
|
13 |
+
|
14 |
+
from fla.modules import RMSNorm
|
15 |
+
from fla.modules.activations import swish, sigmoid
|
16 |
+
from fla.modules.layernorm import rms_norm_linear
|
17 |
+
from fla.ops.scan import parallel_scan, naive_recurrent_scan
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
from fla.models.utils import Cache
|
21 |
+
|
22 |
+
def build_alibi_tensor_scan(head_num, seq_len, window_len, state_size):
|
23 |
+
slopes = torch.tensor([2 ** (-8.0 * i / head_num) for i in range(head_num)])
|
24 |
+
alibi = torch.zeros((head_num, seq_len, window_len))
|
25 |
+
for i in range(seq_len):
|
26 |
+
for j in range(window_len):
|
27 |
+
if i < window_len:
|
28 |
+
alibi[:, i, j] = slopes * (j - window_len + 1) if i > (window_len - j - 2) else 0
|
29 |
+
else:
|
30 |
+
alibi[:, i, j] = alibi[:, window_len-1, j]
|
31 |
+
# Now concat a zeros tensor of size (head_num, seq_len, state_size) to the left of the above square tensor
|
32 |
+
alibi = torch.cat((torch.zeros(head_num, seq_len, state_size), alibi), dim=2)
|
33 |
+
return alibi # shape: (head_num, seq_len, state_size + window_size) or (H, T, S + W)
|
34 |
+
|
35 |
+
def scores_mask(T, W, S):
|
36 |
+
# create lower right triangle mask (W, W)
|
37 |
+
mask = torch.tril(torch.ones(W, W)).flip(1)
|
38 |
+
# concat ones with size (T-W, W) in 0th dim
|
39 |
+
mask = torch.cat((mask, torch.ones(T-W, W)), dim=0)
|
40 |
+
# concat ones with size (T, S) in 1st dim
|
41 |
+
mask = torch.cat((torch.ones(T, S), mask), dim=1)
|
42 |
+
return mask # shape: (T, S + W)
|
43 |
+
|
44 |
+
class SemiCompressedAttention(nn.Module):
|
45 |
+
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
mode: str = 'parallel',
|
49 |
+
hidden_size: int = 1024,
|
50 |
+
window_size: int = 512,
|
51 |
+
state_size: int = 64,
|
52 |
+
gate_act: str = 'softmax',
|
53 |
+
max_position_embeddings: Optional[int] = 2048,
|
54 |
+
expand_k: float = 1.,
|
55 |
+
expand_v: float = 1.,
|
56 |
+
num_heads: int = 4,
|
57 |
+
num_kv_heads: Optional[int] = None,
|
58 |
+
elementwise_affine: Optional[bool] = True,
|
59 |
+
norm_first: bool = True,
|
60 |
+
norm_eps: float = 1e-5,
|
61 |
+
gate_logit_normalizer: int = 8,
|
62 |
+
use_output_gate: bool = False,
|
63 |
+
use_norm: bool = True,
|
64 |
+
layer_idx: Optional[int] = None,
|
65 |
+
scale: Optional[float] = 1.,
|
66 |
+
**kwargs
|
67 |
+
) -> SemiCompressedAttention:
|
68 |
+
super().__init__()
|
69 |
+
|
70 |
+
self.mode = mode
|
71 |
+
self.hidden_size = hidden_size
|
72 |
+
self.window_size = window_size
|
73 |
+
self.state_size = state_size
|
74 |
+
self.gate_act = gate_act
|
75 |
+
self.max_position_embeddings = max_position_embeddings
|
76 |
+
self.expand_k = expand_k
|
77 |
+
self.expand_v = expand_v
|
78 |
+
self.num_heads = num_heads
|
79 |
+
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
|
80 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
81 |
+
self.key_dim = int(hidden_size * expand_k)
|
82 |
+
self.value_dim = int(hidden_size * expand_v)
|
83 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
84 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
85 |
+
self.head_k_dim = self.key_dim // self.num_heads
|
86 |
+
self.head_v_dim = self.value_dim // self.num_heads
|
87 |
+
|
88 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
89 |
+
|
90 |
+
self.use_output_gate = use_output_gate
|
91 |
+
self.use_norm = use_norm
|
92 |
+
self.scale = scale
|
93 |
+
|
94 |
+
self.norm_first = norm_first
|
95 |
+
|
96 |
+
self.layer_idx = layer_idx
|
97 |
+
|
98 |
+
if layer_idx is None:
|
99 |
+
warnings.warn(
|
100 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
101 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
102 |
+
"when creating this class."
|
103 |
+
)
|
104 |
+
|
105 |
+
if norm_first:
|
106 |
+
self.norm = RMSNorm(self.hidden_size, eps=norm_eps)
|
107 |
+
|
108 |
+
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
109 |
+
self.k_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False)
|
110 |
+
self.v_proj = nn.Linear(self.hidden_size, self.value_dim_per_group, bias=False)
|
111 |
+
self.s_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False)
|
112 |
+
self.g_proj = nn.Linear(self.hidden_size, self.num_heads * self.state_size, bias=False)
|
113 |
+
|
114 |
+
self.norm = RMSNorm(self.hidden_size, elementwise_affine, eps=norm_eps)
|
115 |
+
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
|
116 |
+
|
117 |
+
self.apply(self._initialize_weights)
|
118 |
+
|
119 |
+
self.register_buffer('alibi', build_alibi_tensor_scan(self.num_heads, self.max_position_embeddings, self.window_size, self.state_size))
|
120 |
+
self.register_buffer('mask', scores_mask(self.max_position_embeddings, self.window_size, self.state_size))
|
121 |
+
|
122 |
+
def _initialize_weights(self, module: nn.Module):
|
123 |
+
if getattr(module, "_is_hf_initialized", False):
|
124 |
+
return
|
125 |
+
if isinstance(module, nn.Linear):
|
126 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
127 |
+
if module.bias is not None:
|
128 |
+
nn.init.zeros_(module.bias)
|
129 |
+
module._is_hf_initialized = True
|
130 |
+
|
131 |
+
def forward(
|
132 |
+
self,
|
133 |
+
hidden_states: torch.Tensor,
|
134 |
+
attention_mask: Optional[torch.Tensor] = None,
|
135 |
+
past_key_values: Optional[Cache] = None,
|
136 |
+
use_cache: Optional[bool] = False,
|
137 |
+
output_attentions: Optional[bool] = False,
|
138 |
+
**kwargs
|
139 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
140 |
+
if attention_mask is not None:
|
141 |
+
assert len(attention_mask.shape) == 2, (
|
142 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
143 |
+
"for padding purposes (0 indicating padding). "
|
144 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
145 |
+
)
|
146 |
+
|
147 |
+
# launching the triton kernel for just one token will actually be slower
|
148 |
+
mode = 'naive' if past_key_values is not None else self.mode
|
149 |
+
|
150 |
+
if self.norm_first:
|
151 |
+
hidden_states = self.norm(hidden_states)
|
152 |
+
|
153 |
+
last_state = None
|
154 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
155 |
+
last_state = past_key_values[self.layer_idx]
|
156 |
+
|
157 |
+
q = self.q_proj(hidden_states)
|
158 |
+
k = self.k_proj(hidden_states)
|
159 |
+
v = self.v_proj(hidden_states)
|
160 |
+
s = self.s_proj(hidden_states)
|
161 |
+
g = self.g_proj(hidden_states)
|
162 |
+
|
163 |
+
if self.gate_act == 'softmax':
|
164 |
+
g = F.softmax(g, dim=-1)
|
165 |
+
elif self.gate_act == 'sigmoid':
|
166 |
+
g = sigmoid(g)
|
167 |
+
else:
|
168 |
+
raise NotImplementedError(f"Gate activation `{self.gate_act}` is not supported.")
|
169 |
+
|
170 |
+
# KV cache is updated before going into SCAN
|
171 |
+
if past_key_values is not None:
|
172 |
+
k, v = past_key_values.update(
|
173 |
+
attn_state=(k, v),
|
174 |
+
layer_idx=self.layer_idx,
|
175 |
+
offset=q.shape[2],
|
176 |
+
# We actually don't want to crop to window for the initial prompt, only for subsequent autoregressive tokens
|
177 |
+
cache_kwargs=dict(window_size=self.window_size) if q.shape[-2] == 1 else dict()
|
178 |
+
)['attn_state']
|
179 |
+
|
180 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
181 |
+
if mode == 'parallel':
|
182 |
+
# Split heads (but merge with batch dimension because kernels receive (B T C) shape)
|
183 |
+
q = rearrange(q, 'b t (h c) -> (b h) t c', h=self.num_heads)
|
184 |
+
k = rearrange(k, 'b t (h c) -> (b h) t c', h=self.num_kv_heads)
|
185 |
+
v = rearrange(v, 'b t (h c) -> (b h) t c', h=self.num_kv_heads)
|
186 |
+
s = rearrange(s, 'b t (h c) -> (b h) t c', h=self.num_kv_heads)
|
187 |
+
g = rearrange(g, 'b t (h s) -> (b h) t s', h=self.num_kv_heads)
|
188 |
+
o, recurrent_state = parallel_scan(
|
189 |
+
q=q,
|
190 |
+
k=k,
|
191 |
+
v=v,
|
192 |
+
s=s,
|
193 |
+
g=g,
|
194 |
+
window_size=self.window_size,
|
195 |
+
num_heads=self.num_heads,
|
196 |
+
alibi=self.alibi.to(q.device),
|
197 |
+
mask=self.mask.to(q.device),
|
198 |
+
initial_state=recurrent_state,
|
199 |
+
output_final_state=use_cache,
|
200 |
+
scale=self.scale,
|
201 |
+
head_first=False
|
202 |
+
)
|
203 |
+
o = rearrange(o, '(b h) t c -> b t (h c)', h=self.num_heads)
|
204 |
+
elif mode == 'naive':
|
205 |
+
# TODO: Implement naive recurrent SCAN for inference
|
206 |
+
q = rearrange(q, 'b t (h c) -> b h t c', h=self.num_heads)
|
207 |
+
k = rearrange(k, 'b t (h c) -> b h t c', h=self.num_kv_heads)
|
208 |
+
v = rearrange(v, 'b t (h c) -> b h t c', h=self.num_kv_heads)
|
209 |
+
s = rearrange(s, 'b t (h c) -> b h t c', h=self.num_kv_heads)
|
210 |
+
g = rearrange(g, 'b t (h s) -> b h t s', h=self.num_kv_heads)
|
211 |
+
o, recurrent_state = naive_recurrent_scan(
|
212 |
+
q=q,
|
213 |
+
k=k,
|
214 |
+
v=v,
|
215 |
+
s=s,
|
216 |
+
g=g,
|
217 |
+
window_size=self.window_size,
|
218 |
+
alibi=self.alibi.to(q.device),
|
219 |
+
mask=self.mask.to(q.device),
|
220 |
+
initial_state=recurrent_state,
|
221 |
+
output_final_state=use_cache,
|
222 |
+
scale=self.scale,
|
223 |
+
head_first=False
|
224 |
+
)
|
225 |
+
o = rearrange(o, 'b h t c -> b t (h c)', h=self.num_heads)
|
226 |
+
else:
|
227 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
228 |
+
|
229 |
+
# Update the recurrent state after SCAN
|
230 |
+
if past_key_values is not None:
|
231 |
+
past_key_values.update(
|
232 |
+
recurrent_state=recurrent_state,
|
233 |
+
layer_idx=self.layer_idx
|
234 |
+
)
|
235 |
+
|
236 |
+
o = rms_norm_linear(swish(o), self.norm.weight, self.norm.bias, self.o_proj.weight, self.o_proj.bias)
|
237 |
+
return o, None, past_key_values
|
fla/layers/simple_gla.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) 2024, Songlin Yang, Yu Zhang
|
3 |
+
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import TYPE_CHECKING, Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
|
13 |
+
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
|
14 |
+
from fla.modules.activations import ACT2FN
|
15 |
+
from fla.ops.simple_gla import chunk_simple_gla, fused_recurrent_simple_gla
|
16 |
+
|
17 |
+
if TYPE_CHECKING:
|
18 |
+
from fla.models.utils import Cache
|
19 |
+
|
20 |
+
|
21 |
+
class SimpleGatedLinearAttention(nn.Module):
|
22 |
+
r"""
|
23 |
+
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
|
24 |
+
This layer calls the simplified GLA kernel in which the gating is head-wise instead of elementwise.
|
25 |
+
|
26 |
+
Args:
|
27 |
+
mode (str, Optional):
|
28 |
+
Which GLA kernel to use.
|
29 |
+
Currently available: `chunk`.
|
30 |
+
Default: `chunk`.
|
31 |
+
hidden_size (int, Optional):
|
32 |
+
The hidden size of the input. Default: 1024.
|
33 |
+
expand_k (float, Optional):
|
34 |
+
The expansion ratio for the key dim. Default: 1.0.
|
35 |
+
expand_v (float, Optional):
|
36 |
+
The expansion ratio for the value dim. Default: 1.0.
|
37 |
+
num_heads (int, Optional):
|
38 |
+
The number of heads. Default: 4.
|
39 |
+
num_kv_heads (int, Optional):
|
40 |
+
The number of key/value heads, used for MQA. Default: None.
|
41 |
+
feature_map (str, Optional):
|
42 |
+
Feature map function applied to queries/keys. Default: None.
|
43 |
+
use_short_conv (bool, Optional):
|
44 |
+
Whether to use short convolutions. Default: `False`.
|
45 |
+
conv_size (int, Optional):
|
46 |
+
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
47 |
+
conv_bias (bool, Optional):
|
48 |
+
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
49 |
+
gate_fn (str, Optional):
|
50 |
+
The activation function for the output gate. Default: `swish`.
|
51 |
+
elementwise_affine (bool, Optional):
|
52 |
+
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
53 |
+
norm_eps (float, Optional):
|
54 |
+
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
55 |
+
gate_logit_normalizer (int, Optional):
|
56 |
+
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
|
57 |
+
fuse_norm (bool, Optional):
|
58 |
+
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
59 |
+
layer_idx (int, Optional):
|
60 |
+
The index of the layer. Default: None.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
mode: str = 'chunk',
|
66 |
+
hidden_size: int = 1024,
|
67 |
+
expand_k: float = 1.,
|
68 |
+
expand_v: float = 1.,
|
69 |
+
num_heads: int = 4,
|
70 |
+
num_kv_heads: Optional[int] = None,
|
71 |
+
feature_map: Optional[str] = None,
|
72 |
+
use_short_conv: bool = True,
|
73 |
+
conv_size: int = 4,
|
74 |
+
conv_bias: bool = False,
|
75 |
+
gate_fn: str = 'swish',
|
76 |
+
elementwise_affine: Optional[bool] = True,
|
77 |
+
norm_eps: float = 1e-5,
|
78 |
+
gate_logit_normalizer: int = 16,
|
79 |
+
fuse_norm: bool = True,
|
80 |
+
layer_idx: int = None,
|
81 |
+
) -> SimpleGatedLinearAttention:
|
82 |
+
super().__init__()
|
83 |
+
|
84 |
+
self.mode = mode
|
85 |
+
self.hidden_size = hidden_size
|
86 |
+
self.expand_k = expand_k
|
87 |
+
self.expand_v = expand_v
|
88 |
+
self.num_heads = num_heads
|
89 |
+
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
90 |
+
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
91 |
+
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
|
92 |
+
|
93 |
+
self.use_short_conv = use_short_conv
|
94 |
+
self.conv_size = conv_size
|
95 |
+
self.conv_bias = conv_bias
|
96 |
+
|
97 |
+
self.key_dim = int(hidden_size * expand_k)
|
98 |
+
self.value_dim = int(hidden_size * expand_v)
|
99 |
+
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
100 |
+
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
101 |
+
self.layer_idx = layer_idx
|
102 |
+
|
103 |
+
assert mode in ['chunk', "fused_recurrent"], f"Not suppoerted mode `{mode}`."
|
104 |
+
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
105 |
+
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
106 |
+
|
107 |
+
self.head_qk_dim = self.key_dim // num_heads
|
108 |
+
self.head_v_dim = self.value_dim // num_heads
|
109 |
+
|
110 |
+
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
111 |
+
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
112 |
+
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
113 |
+
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
114 |
+
|
115 |
+
if use_short_conv:
|
116 |
+
self.conv_size = conv_size
|
117 |
+
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
118 |
+
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
119 |
+
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
120 |
+
|
121 |
+
self.gk_proj = nn.Linear(hidden_size, self.num_heads)
|
122 |
+
|
123 |
+
if gate_fn == 'swish' and fuse_norm:
|
124 |
+
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
|
125 |
+
self.fuse_norm_and_gate = True
|
126 |
+
else:
|
127 |
+
self.fuse_norm_and_gate = False
|
128 |
+
self.g_norm = RMSNorm(hidden_size=self.head_v_dim, elementwise_affine=elementwise_affine, eps=norm_eps)
|
129 |
+
self.gate_fn = ACT2FN[gate_fn]
|
130 |
+
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
131 |
+
|
132 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
133 |
+
|
134 |
+
self.apply(self._initialize_weights)
|
135 |
+
|
136 |
+
def _initialize_weights(self, module: nn.Module):
|
137 |
+
if getattr(module, "_is_hf_initialized", False):
|
138 |
+
return
|
139 |
+
if isinstance(module, nn.Linear):
|
140 |
+
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
141 |
+
if module.bias is not None:
|
142 |
+
nn.init.zeros_(module.bias)
|
143 |
+
module._is_hf_initialized = True
|
144 |
+
|
145 |
+
def forward(
|
146 |
+
self,
|
147 |
+
hidden_states: torch.Tensor,
|
148 |
+
attention_mask: Optional[torch.Tensor] = None,
|
149 |
+
past_key_values: Optional[Cache] = None,
|
150 |
+
use_cache: Optional[bool] = False,
|
151 |
+
output_attentions: Optional[bool] = False,
|
152 |
+
**kwargs
|
153 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
154 |
+
if attention_mask is not None:
|
155 |
+
assert len(attention_mask.shape) == 2, (
|
156 |
+
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
157 |
+
"for padding purposes (0 indicating padding). "
|
158 |
+
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
159 |
+
)
|
160 |
+
|
161 |
+
# launching the triton kernel for just one token will actually be slower
|
162 |
+
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
163 |
+
|
164 |
+
last_state = None
|
165 |
+
if past_key_values is not None and len(past_key_values) > self.layer_idx:
|
166 |
+
last_state = past_key_values[self.layer_idx]
|
167 |
+
|
168 |
+
if self.use_short_conv:
|
169 |
+
conv_state_q, conv_state_k, conv_state_v = None, None, None
|
170 |
+
if last_state is not None:
|
171 |
+
conv_state_q, conv_state_k, conv_state_v = last_state['conv_state']
|
172 |
+
conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None
|
173 |
+
q, conv_state_q = self.q_conv1d(x=self.q_proj(hidden_states),
|
174 |
+
mask=conv_mask,
|
175 |
+
cache=conv_state_q,
|
176 |
+
output_final_state=use_cache)
|
177 |
+
k, conv_state_k = self.k_conv1d(x=self.k_proj(hidden_states),
|
178 |
+
mask=conv_mask,
|
179 |
+
cache=conv_state_k,
|
180 |
+
output_final_state=use_cache)
|
181 |
+
v, conv_state_v = self.v_conv1d(x=self.v_proj(hidden_states),
|
182 |
+
mask=conv_mask,
|
183 |
+
cache=conv_state_v,
|
184 |
+
output_final_state=use_cache)
|
185 |
+
else:
|
186 |
+
q = self.q_proj(hidden_states)
|
187 |
+
k = self.k_proj(hidden_states)
|
188 |
+
v = self.v_proj(hidden_states)
|
189 |
+
gk = self.gk_proj(hidden_states)
|
190 |
+
|
191 |
+
if self.feature_map_fn is not None:
|
192 |
+
q, k = map(self.feature_map_fn, (q, k))
|
193 |
+
# dealing with left-padding
|
194 |
+
if attention_mask is not None:
|
195 |
+
v = v.mul_(attention_mask[:, -v.shape[-2]:, None])
|
196 |
+
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
|
197 |
+
if self.num_kv_groups > 1:
|
198 |
+
k, v = (repeat(x, '... (h d) -> ... (h g) d', h=self.num_kv_heads, g=self.num_kv_groups) for x in (k, v))
|
199 |
+
else:
|
200 |
+
k, v = (rearrange(x, '... (h d) -> ... h d', h=self.num_kv_heads) for x in (k, v))
|
201 |
+
gk = F.logsigmoid(gk) / self.gate_logit_normalizer
|
202 |
+
|
203 |
+
recurrent_state = last_state['recurrent_state'] if last_state is not None else None
|
204 |
+
if mode == 'chunk':
|
205 |
+
o, recurrent_state = chunk_simple_gla(
|
206 |
+
q=q,
|
207 |
+
k=k,
|
208 |
+
v=v,
|
209 |
+
gk=gk,
|
210 |
+
initial_state=recurrent_state,
|
211 |
+
output_final_state=use_cache,
|
212 |
+
head_first=False
|
213 |
+
)
|
214 |
+
elif mode == 'fused_recurrent':
|
215 |
+
o, recurrent_state = fused_recurrent_simple_gla(
|
216 |
+
q=q,
|
217 |
+
k=k,
|
218 |
+
v=v,
|
219 |
+
gk=gk,
|
220 |
+
initial_state=recurrent_state,
|
221 |
+
output_final_state=use_cache,
|
222 |
+
head_first=False
|
223 |
+
)
|
224 |
+
else:
|
225 |
+
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
226 |
+
|
227 |
+
if past_key_values is not None:
|
228 |
+
past_key_values.update(
|
229 |
+
recurrent_state=recurrent_state,
|
230 |
+
conv_state=(conv_state_q, conv_state_k, conv_state_v) if self.use_short_conv else None,
|
231 |
+
layer_idx=self.layer_idx,
|
232 |
+
offset=q.shape[2]
|
233 |
+
)
|
234 |
+
|
235 |
+
g = self.g_proj(hidden_states)
|
236 |
+
if self.fuse_norm_and_gate:
|
237 |
+
g = rearrange(g, 'b t (h d) -> b t h d', h=self.num_heads)
|
238 |
+
o = self.g_norm_swish_gate(o, g)
|
239 |
+
o = rearrange(o, 'b t h d -> b t (h d)')
|
240 |
+
else:
|
241 |
+
o = rearrange(self.g_norm(o), 'b t h d -> b t (h d)')
|
242 |
+
o = o * self.gate_fn(g)
|
243 |
+
o = self.o_proj(o)
|
244 |
+
|
245 |
+
return o, None, past_key_values
|
246 |
+
|
247 |
+
def state_size(self, **kwargs) -> int:
|
248 |
+
state_size = self.key_dim * self.head_v_dim
|
249 |
+
for module in self.children():
|
250 |
+
if isinstance(module, ShortConvolution):
|
251 |
+
state_size += module.state_size
|
252 |
+
return state_size
|
fla/models/__init__.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from fla.models.abc import ABCConfig, ABCForCausalLM, ABCModel
|
4 |
+
from fla.models.bitnet import BitNetConfig, BitNetForCausalLM, BitNetModel
|
5 |
+
from fla.models.delta_net import (DeltaNetConfig, DeltaNetForCausalLM,
|
6 |
+
DeltaNetModel)
|
7 |
+
from fla.models.gla import GLAConfig, GLAForCausalLM, GLAModel
|
8 |
+
from fla.models.gsa import GSAConfig, GSAForCausalLM, GSAModel
|
9 |
+
from fla.models.hgrn import HGRNConfig, HGRNForCausalLM, HGRNModel
|
10 |
+
from fla.models.hgrn2 import HGRN2Config, HGRN2ForCausalLM, HGRN2Model
|
11 |
+
from fla.models.linear_attn import (LinearAttentionConfig,
|
12 |
+
LinearAttentionForCausalLM,
|
13 |
+
LinearAttentionModel)
|
14 |
+
from fla.models.mamba import MambaConfig, MambaForCausalLM, MambaModel
|
15 |
+
from fla.models.mamba2 import Mamba2Config, Mamba2ForCausalLM, Mamba2Model
|
16 |
+
from fla.models.retnet import RetNetConfig, RetNetForCausalLM, RetNetModel
|
17 |
+
from fla.models.rwkv6 import RWKV6Config, RWKV6ForCausalLM, RWKV6Model
|
18 |
+
from fla.models.samba import SambaConfig, SambaForCausalLM, SambaModel
|
19 |
+
from fla.models.scan import SCANConfig, SCANForCausalLM, SCANModel
|
20 |
+
from fla.models.transformer import (TransformerConfig, TransformerForCausalLM,
|
21 |
+
TransformerModel)
|
22 |
+
|
23 |
+
__all__ = [
|
24 |
+
'ABCConfig', 'ABCForCausalLM', 'ABCModel',
|
25 |
+
'BitNetConfig', 'BitNetForCausalLM', 'BitNetModel',
|
26 |
+
'DeltaNetConfig', 'DeltaNetForCausalLM', 'DeltaNetModel',
|
27 |
+
'GLAConfig', 'GLAForCausalLM', 'GLAModel',
|
28 |
+
'GSAConfig', 'GSAForCausalLM', 'GSAModel',
|
29 |
+
'HGRNConfig', 'HGRNForCausalLM', 'HGRNModel',
|
30 |
+
'HGRN2Config', 'HGRN2ForCausalLM', 'HGRN2Model',
|
31 |
+
'LinearAttentionConfig', 'LinearAttentionForCausalLM', 'LinearAttentionModel',
|
32 |
+
'MambaConfig', 'MambaForCausalLM', 'MambaModel',
|
33 |
+
'Mamba2Config', 'Mamba2ForCausalLM', 'Mamba2Model',
|
34 |
+
'RetNetConfig', 'RetNetForCausalLM', 'RetNetModel',
|
35 |
+
'RWKV6Config', 'RWKV6ForCausalLM', 'RWKV6Model',
|
36 |
+
'SambaConfig', 'SambaForCausalLM', 'SambaModel',
|
37 |
+
'SCANConfig', 'SCANForCausalLM', 'SCANModel',
|
38 |
+
'TransformerConfig', 'TransformerForCausalLM', 'TransformerModel'
|
39 |
+
]
|
fla/models/abc/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.abc.configuration_abc import ABCConfig
|
6 |
+
from fla.models.abc.modeling_abc import ABCForCausalLM, ABCModel
|
7 |
+
|
8 |
+
AutoConfig.register(ABCConfig.model_type, ABCConfig)
|
9 |
+
AutoModel.register(ABCConfig, ABCModel)
|
10 |
+
AutoModelForCausalLM.register(ABCConfig, ABCForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['ABCConfig', 'ABCForCausalLM', 'ABCModel']
|
fla/models/abc/configuration_abc.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class ABCConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'abc'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
gate_low_rank_dim: int = 16,
|
17 |
+
clamp_min: float = -32,
|
18 |
+
clamp_max: float = 32,
|
19 |
+
hidden_ratio: Optional[int] = 4,
|
20 |
+
intermediate_size: Optional[int] = None,
|
21 |
+
num_hidden_layers: int = 24,
|
22 |
+
num_heads: int = 4,
|
23 |
+
num_slots: Optional[int] = 64,
|
24 |
+
use_short_conv: bool = False,
|
25 |
+
conv_size: int = 4,
|
26 |
+
exapnd_k: float = 0.5,
|
27 |
+
exapnd_v: float = 1,
|
28 |
+
hidden_act: str = "swish",
|
29 |
+
max_position_embeddings: int = 2048,
|
30 |
+
elementwise_affine: Optional[bool] = True,
|
31 |
+
norm_eps: float = 1e-6,
|
32 |
+
attn: Optional[Dict] = None,
|
33 |
+
use_cache: bool = True,
|
34 |
+
pad_token_id: int = None,
|
35 |
+
bos_token_id: int = 1,
|
36 |
+
eos_token_id: int = 2,
|
37 |
+
tie_word_embeddings: bool = False,
|
38 |
+
initializer_range: float = 0.02,
|
39 |
+
fuse_norm: bool = True,
|
40 |
+
fuse_cross_entropy: bool = True,
|
41 |
+
vocab_size: int = 32000,
|
42 |
+
**kwargs
|
43 |
+
):
|
44 |
+
self.hidden_size = hidden_size
|
45 |
+
self.gate_low_rank_dim = gate_low_rank_dim
|
46 |
+
self.clamp_min = clamp_min
|
47 |
+
self.clamp_max = clamp_max
|
48 |
+
self.hidden_ratio = hidden_ratio
|
49 |
+
self.intermediate_size = intermediate_size
|
50 |
+
self.num_hidden_layers = num_hidden_layers
|
51 |
+
self.num_heads = num_heads
|
52 |
+
self.num_slots = num_slots
|
53 |
+
self.use_short_conv = use_short_conv
|
54 |
+
self.conv_size = conv_size
|
55 |
+
self.expand_k = exapnd_k
|
56 |
+
self.expand_v = exapnd_v
|
57 |
+
self.hidden_act = hidden_act
|
58 |
+
self.max_position_embeddings = max_position_embeddings
|
59 |
+
self.elementwise_affine = elementwise_affine
|
60 |
+
self.norm_eps = norm_eps
|
61 |
+
self.attn = attn
|
62 |
+
self.use_cache = use_cache
|
63 |
+
self.initializer_range = initializer_range
|
64 |
+
self.fuse_norm = fuse_norm
|
65 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
66 |
+
self.vocab_size = vocab_size
|
67 |
+
|
68 |
+
if attn is not None:
|
69 |
+
if not isinstance(attn, Dict):
|
70 |
+
raise ValueError("attn must be a dictionary")
|
71 |
+
if 'layers' not in attn:
|
72 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
73 |
+
if 'num_heads' not in attn:
|
74 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
75 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
76 |
+
attn['window_size'] = attn.get('window_size', None)
|
77 |
+
|
78 |
+
super().__init__(
|
79 |
+
pad_token_id=pad_token_id,
|
80 |
+
bos_token_id=bos_token_id,
|
81 |
+
eos_token_id=eos_token_id,
|
82 |
+
tie_word_embeddings=tie_word_embeddings,
|
83 |
+
**kwargs,
|
84 |
+
)
|
fla/models/abc/modeling_abc.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.activations import ACT2FN
|
13 |
+
from transformers.generation import GenerationMixin
|
14 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
15 |
+
CausalLMOutputWithPast)
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
from fla.layers.abc import ABCAttention
|
20 |
+
from fla.layers.attn import Attention
|
21 |
+
from fla.models.abc.configuration_abc import ABCConfig
|
22 |
+
from fla.models.utils import Cache
|
23 |
+
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
|
24 |
+
RMSNorm)
|
25 |
+
from fla.modules.activations import swiglu_linear
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class ABCMLP(nn.Module):
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
hidden_size: int,
|
35 |
+
hidden_ratio: Optional[int] = None,
|
36 |
+
intermediate_size: Optional[int] = None,
|
37 |
+
hidden_act: str = 'swish'
|
38 |
+
) -> ABCMLP:
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.hidden_size = hidden_size
|
42 |
+
# the final number of params is `hidden_ratio * hidden_size^2`
|
43 |
+
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
44 |
+
if hidden_ratio is None:
|
45 |
+
hidden_ratio = 4
|
46 |
+
if intermediate_size is None:
|
47 |
+
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
48 |
+
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
49 |
+
self.hidden_ratio = hidden_ratio
|
50 |
+
self.intermediate_size = intermediate_size
|
51 |
+
|
52 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
53 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
54 |
+
self.act_fn = ACT2FN[hidden_act]
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
y = self.gate_proj(x)
|
58 |
+
gate, y = y.chunk(2, -1)
|
59 |
+
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
60 |
+
|
61 |
+
|
62 |
+
class ABCBlock(nn.Module):
|
63 |
+
def __init__(self, config: ABCConfig, layer_idx: int):
|
64 |
+
super().__init__()
|
65 |
+
self.hidden_size = config.hidden_size
|
66 |
+
|
67 |
+
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
68 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
69 |
+
self.attn = Attention(
|
70 |
+
hidden_size=config.hidden_size,
|
71 |
+
num_heads=config.attn['num_heads'],
|
72 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
73 |
+
window_size=config.attn['window_size'],
|
74 |
+
max_position_embeddings=config.max_position_embeddings,
|
75 |
+
layer_idx=layer_idx
|
76 |
+
)
|
77 |
+
else:
|
78 |
+
self.attn = ABCAttention(
|
79 |
+
hidden_size=config.hidden_size,
|
80 |
+
expand_k=config.expand_k,
|
81 |
+
expand_v=config.expand_v,
|
82 |
+
num_heads=config.num_heads,
|
83 |
+
num_slots=config.num_slots,
|
84 |
+
use_short_conv=config.use_short_conv,
|
85 |
+
conv_size=config.conv_size,
|
86 |
+
gate_fn=config.hidden_act,
|
87 |
+
elementwise_affine=config.elementwise_affine,
|
88 |
+
norm_eps=config.norm_eps,
|
89 |
+
clamp_min=config.clamp_min,
|
90 |
+
clamp_max=config.clamp_max,
|
91 |
+
fuse_norm=config.fuse_norm,
|
92 |
+
layer_idx=layer_idx
|
93 |
+
)
|
94 |
+
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
95 |
+
self.mlp = ABCMLP(
|
96 |
+
hidden_size=config.hidden_size,
|
97 |
+
hidden_ratio=config.hidden_ratio,
|
98 |
+
intermediate_size=config.intermediate_size,
|
99 |
+
hidden_act=config.hidden_act
|
100 |
+
)
|
101 |
+
|
102 |
+
def forward(
|
103 |
+
self,
|
104 |
+
hidden_states: torch.Tensor,
|
105 |
+
attention_mask: Optional[torch.Tensor] = None,
|
106 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
107 |
+
use_cache: Optional[bool] = False,
|
108 |
+
output_attentions: Optional[bool] = False,
|
109 |
+
**kwargs,
|
110 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
111 |
+
|
112 |
+
residual = hidden_states
|
113 |
+
|
114 |
+
hidden_states = self.attn_norm(hidden_states)
|
115 |
+
hidden_states, attentions, past_key_values = self.attn(
|
116 |
+
hidden_states=hidden_states,
|
117 |
+
attention_mask=attention_mask,
|
118 |
+
past_key_values=past_key_values,
|
119 |
+
use_cache=use_cache,
|
120 |
+
output_attentions=output_attentions
|
121 |
+
)
|
122 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
123 |
+
hidden_states = self.mlp(hidden_states)
|
124 |
+
hidden_states = residual + hidden_states
|
125 |
+
|
126 |
+
outputs = (hidden_states, attentions, past_key_values)
|
127 |
+
|
128 |
+
return outputs
|
129 |
+
|
130 |
+
|
131 |
+
class ABCPreTrainedModel(PreTrainedModel):
|
132 |
+
|
133 |
+
config_class = ABCConfig
|
134 |
+
supports_gradient_checkpointing = True
|
135 |
+
_no_split_modules = ['ABCBlock']
|
136 |
+
|
137 |
+
def __init__(self, *inputs, **kwargs):
|
138 |
+
super().__init__(*inputs, **kwargs)
|
139 |
+
|
140 |
+
def _init_weights(
|
141 |
+
self,
|
142 |
+
module: nn.Module,
|
143 |
+
rescale_prenorm_residual: bool = True,
|
144 |
+
num_residuals_per_layer: int = 2,
|
145 |
+
):
|
146 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
147 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
148 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
149 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
150 |
+
if module.bias is not None:
|
151 |
+
nn.init.zeros_(module.bias)
|
152 |
+
elif isinstance(module, nn.Embedding):
|
153 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
154 |
+
if module.padding_idx is not None:
|
155 |
+
module.weight.data[module.padding_idx].zero_()
|
156 |
+
|
157 |
+
if rescale_prenorm_residual:
|
158 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
159 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
160 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
161 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
162 |
+
#
|
163 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
164 |
+
for name, p in module.named_parameters():
|
165 |
+
if name in ["o_proj.weight", "down_proj.weight"]:
|
166 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
167 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
168 |
+
# We need to reinit p since this code could be called multiple times
|
169 |
+
# Having just p *= scale would repeatedly scale it down
|
170 |
+
with torch.no_grad():
|
171 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
172 |
+
|
173 |
+
|
174 |
+
class ABCModel(ABCPreTrainedModel):
|
175 |
+
|
176 |
+
def __init__(self, config: ABCConfig):
|
177 |
+
super().__init__(config)
|
178 |
+
self.padding_idx = config.pad_token_id
|
179 |
+
self.vocab_size = config.vocab_size
|
180 |
+
|
181 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
182 |
+
self.layers = nn.ModuleList([ABCBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
183 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
184 |
+
|
185 |
+
self.gradient_checkpointing = False
|
186 |
+
|
187 |
+
self.post_init()
|
188 |
+
|
189 |
+
def get_input_embeddings(self):
|
190 |
+
return self.embeddings
|
191 |
+
|
192 |
+
def set_input_embeddings(self, value):
|
193 |
+
self.embeddings = value
|
194 |
+
|
195 |
+
def forward(
|
196 |
+
self,
|
197 |
+
input_ids: Optional[torch.LongTensor] = None,
|
198 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
199 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
200 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
201 |
+
use_cache: Optional[bool] = None,
|
202 |
+
output_attentions: Optional[bool] = None,
|
203 |
+
output_hidden_states: Optional[bool] = None,
|
204 |
+
return_dict: Optional[bool] = None
|
205 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
206 |
+
if output_attentions:
|
207 |
+
warnings.warn("`ABCModel` does not `output_attentions` now, setting it to `False`.")
|
208 |
+
output_attentions = False
|
209 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
210 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
211 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
212 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
213 |
+
|
214 |
+
# retrieve input_ids and inputs_embeds
|
215 |
+
if input_ids is not None and inputs_embeds is not None:
|
216 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
217 |
+
if input_ids is None and inputs_embeds is None:
|
218 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
219 |
+
|
220 |
+
if inputs_embeds is None:
|
221 |
+
inputs_embeds = self.embeddings(input_ids)
|
222 |
+
hidden_states = inputs_embeds
|
223 |
+
|
224 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
225 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
226 |
+
|
227 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
228 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
229 |
+
use_cache = False
|
230 |
+
|
231 |
+
all_hidden_states = () if output_hidden_states else None
|
232 |
+
all_attns = () if output_attentions else None
|
233 |
+
for layer in self.layers:
|
234 |
+
if output_hidden_states:
|
235 |
+
all_hidden_states += (hidden_states,)
|
236 |
+
|
237 |
+
if self.gradient_checkpointing and self.training:
|
238 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
239 |
+
layer.__call__,
|
240 |
+
hidden_states,
|
241 |
+
attention_mask,
|
242 |
+
past_key_values,
|
243 |
+
use_cache,
|
244 |
+
output_attentions
|
245 |
+
)
|
246 |
+
else:
|
247 |
+
hidden_states, attentions, past_key_values = layer(
|
248 |
+
hidden_states,
|
249 |
+
attention_mask,
|
250 |
+
past_key_values=past_key_values,
|
251 |
+
use_cache=use_cache,
|
252 |
+
output_attentions=output_attentions
|
253 |
+
)
|
254 |
+
|
255 |
+
if output_attentions:
|
256 |
+
all_attns += (attentions,)
|
257 |
+
|
258 |
+
hidden_states = self.norm(hidden_states)
|
259 |
+
|
260 |
+
# add hidden states from the last decoder layer
|
261 |
+
if output_hidden_states:
|
262 |
+
all_hidden_states += (hidden_states,)
|
263 |
+
|
264 |
+
if not return_dict:
|
265 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
266 |
+
return BaseModelOutputWithPast(
|
267 |
+
last_hidden_state=hidden_states,
|
268 |
+
past_key_values=past_key_values,
|
269 |
+
hidden_states=all_hidden_states,
|
270 |
+
attentions=all_attns
|
271 |
+
)
|
272 |
+
|
273 |
+
|
274 |
+
class ABCForCausalLM(ABCPreTrainedModel, GenerationMixin):
|
275 |
+
|
276 |
+
_tied_weights_keys = ["lm_head.weight"]
|
277 |
+
|
278 |
+
def __init__(self, config):
|
279 |
+
super().__init__(config)
|
280 |
+
self.model = ABCModel(config)
|
281 |
+
self.vocab_size = config.vocab_size
|
282 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
283 |
+
|
284 |
+
# Initialize weights and apply final processing
|
285 |
+
self.post_init()
|
286 |
+
|
287 |
+
def get_input_embeddings(self):
|
288 |
+
return self.model.embeddings
|
289 |
+
|
290 |
+
def set_input_embeddings(self, value):
|
291 |
+
self.model.embeddings = value
|
292 |
+
|
293 |
+
def get_output_embeddings(self):
|
294 |
+
return self.lm_head
|
295 |
+
|
296 |
+
def set_output_embeddings(self, new_embeddings):
|
297 |
+
self.lm_head = new_embeddings
|
298 |
+
|
299 |
+
def set_decoder(self, decoder):
|
300 |
+
self.model = decoder
|
301 |
+
|
302 |
+
def get_decoder(self):
|
303 |
+
return self.model
|
304 |
+
|
305 |
+
def generate(self, *args, **kwargs):
|
306 |
+
try:
|
307 |
+
return super().generate(*args, **kwargs)
|
308 |
+
except AttributeError as exception:
|
309 |
+
if 'past_key_values' in str(exception):
|
310 |
+
raise AttributeError(
|
311 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
312 |
+
f"which is not supported for {self.__class__.__name__}. "
|
313 |
+
f"Try another generation strategy instead. "
|
314 |
+
f"For the available generation strategies, check this doc: "
|
315 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
raise exception
|
319 |
+
|
320 |
+
def prepare_inputs_for_generation(
|
321 |
+
self,
|
322 |
+
input_ids: torch.LongTensor = None,
|
323 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
324 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
325 |
+
**kwargs
|
326 |
+
):
|
327 |
+
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
328 |
+
if past_key_values is not None:
|
329 |
+
input_ids = input_ids[:, -1:]
|
330 |
+
|
331 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
332 |
+
if inputs_embeds is not None and past_key_values is None:
|
333 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
334 |
+
else:
|
335 |
+
model_inputs = {'input_ids': input_ids}
|
336 |
+
model_inputs['past_key_values'] = past_key_values
|
337 |
+
return model_inputs
|
338 |
+
|
339 |
+
def forward(
|
340 |
+
self,
|
341 |
+
input_ids: torch.LongTensor = None,
|
342 |
+
attention_mask: Optional[torch.Tensor] = None,
|
343 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
344 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
345 |
+
labels: Optional[torch.LongTensor] = None,
|
346 |
+
use_cache: Optional[bool] = None,
|
347 |
+
output_attentions: Optional[bool] = None,
|
348 |
+
output_hidden_states: Optional[bool] = None,
|
349 |
+
return_dict: Optional[bool] = None,
|
350 |
+
num_logits_to_keep: Optional[int] = 0
|
351 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
352 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
353 |
+
output_hidden_states = (
|
354 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
355 |
+
)
|
356 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
357 |
+
|
358 |
+
outputs = self.model(
|
359 |
+
input_ids=input_ids,
|
360 |
+
attention_mask=attention_mask,
|
361 |
+
inputs_embeds=inputs_embeds,
|
362 |
+
past_key_values=past_key_values,
|
363 |
+
use_cache=use_cache,
|
364 |
+
output_attentions=output_attentions,
|
365 |
+
output_hidden_states=output_hidden_states,
|
366 |
+
return_dict=return_dict
|
367 |
+
)
|
368 |
+
|
369 |
+
hidden_states = outputs[0]
|
370 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
371 |
+
logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -num_logits_to_keep:])
|
372 |
+
|
373 |
+
loss = None
|
374 |
+
if labels is not None:
|
375 |
+
if self.config.fuse_cross_entropy:
|
376 |
+
if fuse_linear_and_cross_entropy:
|
377 |
+
loss_fct = FusedLinearCrossEntropyLoss()
|
378 |
+
else:
|
379 |
+
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
380 |
+
else:
|
381 |
+
loss_fct = nn.CrossEntropyLoss()
|
382 |
+
# Enable model parallelism
|
383 |
+
labels = labels.to(hidden_states.device)
|
384 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
385 |
+
if fuse_linear_and_cross_entropy:
|
386 |
+
loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
|
387 |
+
labels.view(-1),
|
388 |
+
self.lm_head.weight,
|
389 |
+
self.lm_head.bias)
|
390 |
+
else:
|
391 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
392 |
+
|
393 |
+
if not return_dict:
|
394 |
+
output = (logits,) + outputs[1:]
|
395 |
+
return (loss,) + output if loss is not None else output
|
396 |
+
|
397 |
+
return CausalLMOutputWithPast(
|
398 |
+
loss=loss,
|
399 |
+
logits=logits,
|
400 |
+
past_key_values=outputs.past_key_values,
|
401 |
+
hidden_states=outputs.hidden_states,
|
402 |
+
attentions=outputs.attentions,
|
403 |
+
)
|
fla/models/bitnet/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.bitnet.configuration_bitnet import BitNetConfig
|
6 |
+
from fla.models.bitnet.modeling_bitnet import BitNetForCausalLM, BitNetModel
|
7 |
+
|
8 |
+
AutoConfig.register(BitNetConfig.model_type, BitNetConfig)
|
9 |
+
AutoModel.register(BitNetConfig, BitNetModel)
|
10 |
+
AutoModelForCausalLM.register(BitNetConfig, BitNetForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['BitNetConfig', 'BitNetForCausalLM', 'BitNetModel']
|
fla/models/bitnet/configuration_bitnet.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class BitNetConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'bitnet'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
vocab_size: int = 32000,
|
16 |
+
hidden_size: int = 2048,
|
17 |
+
num_hidden_layers: int = 24,
|
18 |
+
num_heads: int = 32,
|
19 |
+
num_kv_heads: int = None,
|
20 |
+
window_size: Optional[int] = None,
|
21 |
+
rope_theta: Optional[float] = 10000.,
|
22 |
+
max_position_embeddings: int = 2048,
|
23 |
+
hidden_ratio: Optional[int] = 4,
|
24 |
+
intermediate_size: Optional[int] = None,
|
25 |
+
hidden_act: str = "swish",
|
26 |
+
initializer_range: float = 0.02,
|
27 |
+
elementwise_affine: Optional[bool] = True,
|
28 |
+
norm_first: bool = False,
|
29 |
+
norm_eps: float = 1e-6,
|
30 |
+
use_cache: bool = True,
|
31 |
+
pad_token_id: int = None,
|
32 |
+
bos_token_id: int = 1,
|
33 |
+
eos_token_id: int = 2,
|
34 |
+
tie_word_embeddings: bool = False,
|
35 |
+
attention_bias: bool = False,
|
36 |
+
fuse_norm: bool = True,
|
37 |
+
fuse_cross_entropy: bool = True,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
self.vocab_size = vocab_size
|
41 |
+
self.hidden_size = hidden_size
|
42 |
+
self.num_hidden_layers = num_hidden_layers
|
43 |
+
self.num_heads = num_heads
|
44 |
+
self.num_kv_heads = num_kv_heads
|
45 |
+
self.window_size = window_size
|
46 |
+
self.rope_theta = rope_theta
|
47 |
+
self.max_position_embeddings = max_position_embeddings
|
48 |
+
|
49 |
+
self.hidden_ratio = hidden_ratio
|
50 |
+
self.intermediate_size = intermediate_size
|
51 |
+
self.hidden_act = hidden_act
|
52 |
+
|
53 |
+
self.initializer_range = initializer_range
|
54 |
+
self.elementwise_affine = elementwise_affine
|
55 |
+
self.norm_first = norm_first
|
56 |
+
self.norm_eps = norm_eps
|
57 |
+
self.use_cache = use_cache
|
58 |
+
self.attention_bias = attention_bias
|
59 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
60 |
+
self.fuse_norm = fuse_norm
|
61 |
+
|
62 |
+
super().__init__(
|
63 |
+
pad_token_id=pad_token_id,
|
64 |
+
bos_token_id=bos_token_id,
|
65 |
+
eos_token_id=eos_token_id,
|
66 |
+
tie_word_embeddings=tie_word_embeddings,
|
67 |
+
**kwargs,
|
68 |
+
)
|
fla/models/bitnet/modeling_bitnet.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.activations import ACT2FN
|
13 |
+
from transformers.generation import GenerationMixin
|
14 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
15 |
+
CausalLMOutputWithPast)
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
from fla.layers.bitattn import BitAttention
|
20 |
+
from fla.models.bitnet.configuration_bitnet import BitNetConfig
|
21 |
+
from fla.models.utils import Cache
|
22 |
+
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
|
23 |
+
RMSNorm)
|
24 |
+
from fla.modules.activations import swiglu_bitlinear
|
25 |
+
from fla.modules.fused_bitlinear import BitLinear, rms_norm_linear_quant
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class BitNetMLP(nn.Module):
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
hidden_size: int,
|
35 |
+
hidden_ratio: Optional[int] = None,
|
36 |
+
intermediate_size: Optional[int] = None,
|
37 |
+
hidden_act: str = 'swish',
|
38 |
+
norm_first: bool = True,
|
39 |
+
norm_eps: float = 1e-5
|
40 |
+
) -> BitNetMLP:
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
self.hidden_size = hidden_size
|
44 |
+
# the final number of params is `hidden_ratio * hidden_size^2`
|
45 |
+
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
46 |
+
if hidden_ratio is None:
|
47 |
+
hidden_ratio = 4
|
48 |
+
if intermediate_size is None:
|
49 |
+
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
50 |
+
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
51 |
+
self.hidden_ratio = hidden_ratio
|
52 |
+
self.intermediate_size = intermediate_size
|
53 |
+
self.norm_first = norm_first
|
54 |
+
|
55 |
+
if norm_first:
|
56 |
+
self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps)
|
57 |
+
|
58 |
+
self.gate_proj = BitLinear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
59 |
+
self.down_proj = BitLinear(self.intermediate_size, self.hidden_size, bias=False)
|
60 |
+
self.act_fn = ACT2FN[hidden_act]
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
if self.norm_first:
|
64 |
+
x = rms_norm_linear_quant(x, self.norm.weight, self.norm.bias, self.gate_proj.weight, self.gate_proj.bias)
|
65 |
+
else:
|
66 |
+
x = self.gate_proj(x)
|
67 |
+
gate, y = x.chunk(2, -1)
|
68 |
+
return swiglu_bitlinear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
69 |
+
|
70 |
+
|
71 |
+
class BitNetBlock(nn.Module):
|
72 |
+
|
73 |
+
def __init__(self, config: BitNetConfig, layer_idx: int):
|
74 |
+
super().__init__()
|
75 |
+
|
76 |
+
self.hidden_size = config.hidden_size
|
77 |
+
|
78 |
+
if not config.norm_first:
|
79 |
+
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
80 |
+
self.attn = BitAttention(
|
81 |
+
hidden_size=config.hidden_size,
|
82 |
+
num_heads=config.num_heads,
|
83 |
+
num_kv_heads=config.num_kv_heads,
|
84 |
+
window_size=config.window_size,
|
85 |
+
rope_theta=config.rope_theta,
|
86 |
+
max_position_embeddings=config.max_position_embeddings,
|
87 |
+
norm_first=config.norm_first,
|
88 |
+
norm_eps=config.norm_eps,
|
89 |
+
layer_idx=layer_idx
|
90 |
+
)
|
91 |
+
if not config.norm_first:
|
92 |
+
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
93 |
+
self.mlp = BitNetMLP(
|
94 |
+
hidden_size=config.hidden_size,
|
95 |
+
hidden_ratio=config.hidden_ratio,
|
96 |
+
intermediate_size=config.intermediate_size,
|
97 |
+
hidden_act=config.hidden_act,
|
98 |
+
norm_first=config.norm_first,
|
99 |
+
norm_eps=config.norm_eps
|
100 |
+
)
|
101 |
+
|
102 |
+
def forward(
|
103 |
+
self,
|
104 |
+
hidden_states: torch.Tensor,
|
105 |
+
attention_mask: Optional[torch.Tensor] = None,
|
106 |
+
past_key_values: Optional[Tuple[torch.Tensor]] = None,
|
107 |
+
output_attentions: Optional[bool] = False,
|
108 |
+
use_cache: Optional[bool] = False,
|
109 |
+
**kwargs,
|
110 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
111 |
+
|
112 |
+
residual = hidden_states
|
113 |
+
if hasattr(self, 'attn_norm'):
|
114 |
+
hidden_states = self.attn_norm(hidden_states)
|
115 |
+
hidden_states, attentions, past_key_values = self.attn(
|
116 |
+
hidden_states=hidden_states,
|
117 |
+
attention_mask=attention_mask,
|
118 |
+
past_key_values=past_key_values,
|
119 |
+
use_cache=use_cache,
|
120 |
+
output_attentions=output_attentions
|
121 |
+
)
|
122 |
+
if hasattr(self, 'mlp_norm'):
|
123 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
124 |
+
else:
|
125 |
+
hidden_states = residual + hidden_states
|
126 |
+
residual = hidden_states
|
127 |
+
hidden_states = self.mlp(hidden_states)
|
128 |
+
hidden_states = residual + hidden_states
|
129 |
+
|
130 |
+
outputs = (hidden_states,)
|
131 |
+
|
132 |
+
if output_attentions:
|
133 |
+
outputs += (attentions,)
|
134 |
+
|
135 |
+
if use_cache:
|
136 |
+
outputs += (past_key_values,)
|
137 |
+
|
138 |
+
return outputs
|
139 |
+
|
140 |
+
|
141 |
+
class BitNetPreTrainedModel(PreTrainedModel):
|
142 |
+
|
143 |
+
config_class = BitNetConfig
|
144 |
+
supports_gradient_checkpointing = True
|
145 |
+
_no_split_modules = ['BitNetBlock']
|
146 |
+
|
147 |
+
def __init__(self, *inputs, **kwargs):
|
148 |
+
super().__init__(*inputs, **kwargs)
|
149 |
+
|
150 |
+
def _init_weights(
|
151 |
+
self,
|
152 |
+
module: nn.Module,
|
153 |
+
rescale_prenorm_residual: bool = False,
|
154 |
+
num_residuals_per_layer: int = 2,
|
155 |
+
):
|
156 |
+
if isinstance(module, (BitLinear, nn.Conv1d)):
|
157 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
158 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
159 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
160 |
+
if module.bias is not None:
|
161 |
+
nn.init.zeros_(module.bias)
|
162 |
+
elif isinstance(module, nn.Embedding):
|
163 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
164 |
+
if module.padding_idx is not None:
|
165 |
+
module.weight.data[module.padding_idx].zero_()
|
166 |
+
|
167 |
+
if rescale_prenorm_residual:
|
168 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
169 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
170 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
171 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
172 |
+
#
|
173 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
174 |
+
for name, p in module.named_parameters():
|
175 |
+
if name in ["o_proj.weight", "down_proj.weight"]:
|
176 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
177 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
178 |
+
# We need to reinit p since this code could be called multiple times
|
179 |
+
# Having just p *= scale would repeatedly scale it down
|
180 |
+
with torch.no_grad():
|
181 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
182 |
+
|
183 |
+
|
184 |
+
class BitNetModel(BitNetPreTrainedModel):
|
185 |
+
|
186 |
+
def __init__(self, config: BitNetConfig):
|
187 |
+
super().__init__(config)
|
188 |
+
self.padding_idx = config.pad_token_id
|
189 |
+
self.vocab_size = config.vocab_size
|
190 |
+
|
191 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
192 |
+
self.layers = nn.ModuleList([BitNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
193 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
194 |
+
|
195 |
+
self.gradient_checkpointing = False
|
196 |
+
|
197 |
+
self.post_init()
|
198 |
+
|
199 |
+
def get_input_embeddings(self):
|
200 |
+
return self.embeddings
|
201 |
+
|
202 |
+
def set_input_embeddings(self, value):
|
203 |
+
self.embeddings = value
|
204 |
+
|
205 |
+
def forward(
|
206 |
+
self,
|
207 |
+
input_ids: Optional[torch.LongTensor] = None,
|
208 |
+
attention_mask: Optional[torch.Tensor] = None,
|
209 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
210 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
211 |
+
use_cache: Optional[bool] = None,
|
212 |
+
output_attentions: Optional[bool] = None,
|
213 |
+
output_hidden_states: Optional[bool] = None,
|
214 |
+
return_dict: Optional[bool] = None
|
215 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
216 |
+
if output_attentions:
|
217 |
+
warnings.warn(
|
218 |
+
"`BitNetModel` does not support output attention weights now, so `output_attentions` is set to `False`."
|
219 |
+
)
|
220 |
+
output_attentions = False
|
221 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
222 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
223 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
224 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
225 |
+
|
226 |
+
# retrieve input_ids and inputs_embeds
|
227 |
+
if input_ids is not None and inputs_embeds is not None:
|
228 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
229 |
+
elif input_ids is None and inputs_embeds is None:
|
230 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
231 |
+
|
232 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
233 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
234 |
+
|
235 |
+
if inputs_embeds is None:
|
236 |
+
inputs_embeds = self.embeddings(input_ids)
|
237 |
+
|
238 |
+
# embed positions
|
239 |
+
hidden_states = inputs_embeds
|
240 |
+
|
241 |
+
if self.gradient_checkpointing and self.training:
|
242 |
+
if use_cache:
|
243 |
+
logger.warning_once(
|
244 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
245 |
+
)
|
246 |
+
use_cache = False
|
247 |
+
|
248 |
+
all_hidden_states = () if output_hidden_states else None
|
249 |
+
all_attns = () if output_attentions else None
|
250 |
+
next_cache = None
|
251 |
+
|
252 |
+
for layer in self.layers:
|
253 |
+
if output_hidden_states:
|
254 |
+
all_hidden_states += (hidden_states,)
|
255 |
+
|
256 |
+
if self.gradient_checkpointing and self.training:
|
257 |
+
layer_outputs = self._gradient_checkpointing_func(
|
258 |
+
layer.__call__,
|
259 |
+
hidden_states,
|
260 |
+
attention_mask,
|
261 |
+
past_key_values,
|
262 |
+
output_attentions,
|
263 |
+
use_cache
|
264 |
+
)
|
265 |
+
else:
|
266 |
+
layer_outputs = layer(
|
267 |
+
hidden_states,
|
268 |
+
attention_mask=attention_mask,
|
269 |
+
past_key_values=past_key_values,
|
270 |
+
output_attentions=output_attentions,
|
271 |
+
use_cache=use_cache
|
272 |
+
)
|
273 |
+
|
274 |
+
hidden_states = layer_outputs[0]
|
275 |
+
|
276 |
+
if use_cache:
|
277 |
+
next_cache = layer_outputs[2 if output_attentions else 1]
|
278 |
+
|
279 |
+
if output_attentions:
|
280 |
+
all_attns += (layer_outputs[1],)
|
281 |
+
|
282 |
+
hidden_states = self.norm(hidden_states)
|
283 |
+
|
284 |
+
# add hidden states from the last decoder layer
|
285 |
+
if output_hidden_states:
|
286 |
+
all_hidden_states += (hidden_states,)
|
287 |
+
|
288 |
+
if not return_dict:
|
289 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attns] if v is not None)
|
290 |
+
|
291 |
+
return BaseModelOutputWithPast(
|
292 |
+
last_hidden_state=hidden_states,
|
293 |
+
past_key_values=next_cache,
|
294 |
+
hidden_states=all_hidden_states,
|
295 |
+
attentions=all_attns
|
296 |
+
)
|
297 |
+
|
298 |
+
|
299 |
+
class BitNetForCausalLM(BitNetPreTrainedModel, GenerationMixin):
|
300 |
+
|
301 |
+
_tied_weights_keys = ["lm_head.weight"]
|
302 |
+
|
303 |
+
def __init__(self, config):
|
304 |
+
super().__init__(config)
|
305 |
+
self.model = BitNetModel(config)
|
306 |
+
self.vocab_size = config.vocab_size
|
307 |
+
self.lm_head = BitLinear(config.hidden_size, config.vocab_size, bias=False)
|
308 |
+
|
309 |
+
# Initialize weights and apply final processing
|
310 |
+
self.post_init()
|
311 |
+
|
312 |
+
def get_input_embeddings(self):
|
313 |
+
return self.model.embeddings
|
314 |
+
|
315 |
+
def set_input_embeddings(self, value):
|
316 |
+
self.model.embeddings = value
|
317 |
+
|
318 |
+
def get_output_embeddings(self):
|
319 |
+
return self.lm_head
|
320 |
+
|
321 |
+
def set_output_embeddings(self, new_embeddings):
|
322 |
+
self.lm_head = new_embeddings
|
323 |
+
|
324 |
+
def set_decoder(self, decoder):
|
325 |
+
self.model = decoder
|
326 |
+
|
327 |
+
def get_decoder(self):
|
328 |
+
return self.model
|
329 |
+
|
330 |
+
def prepare_inputs_for_generation(
|
331 |
+
self,
|
332 |
+
input_ids: torch.LongTensor = None,
|
333 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
334 |
+
attention_mask: Optional[torch.Tensor] = None,
|
335 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
336 |
+
use_cache: bool = True,
|
337 |
+
num_logits_to_keep: Optional[int] = None,
|
338 |
+
**kwargs
|
339 |
+
):
|
340 |
+
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
341 |
+
if past_key_values is not None:
|
342 |
+
input_ids = input_ids[:, -1:]
|
343 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
344 |
+
if inputs_embeds is not None and past_key_values is None:
|
345 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
346 |
+
else:
|
347 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
348 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
349 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
350 |
+
# TODO: use `next_tokens` directly instead.
|
351 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
352 |
+
|
353 |
+
if num_logits_to_keep is not None:
|
354 |
+
model_inputs['num_logits_to_keep'] = num_logits_to_keep
|
355 |
+
|
356 |
+
model_inputs.update({
|
357 |
+
'past_key_values': past_key_values,
|
358 |
+
'use_cache': use_cache,
|
359 |
+
'attention_mask': attention_mask,
|
360 |
+
'num_logits_to_keep': num_logits_to_keep,
|
361 |
+
})
|
362 |
+
return model_inputs
|
363 |
+
|
364 |
+
def forward(
|
365 |
+
self,
|
366 |
+
input_ids: torch.LongTensor = None,
|
367 |
+
attention_mask: Optional[torch.Tensor] = None,
|
368 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
369 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
370 |
+
labels: Optional[torch.LongTensor] = None,
|
371 |
+
use_cache: Optional[bool] = None,
|
372 |
+
output_attentions: Optional[bool] = None,
|
373 |
+
output_hidden_states: Optional[bool] = None,
|
374 |
+
return_dict: Optional[bool] = None,
|
375 |
+
num_logits_to_keep: Optional[int] = 0
|
376 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
377 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
378 |
+
output_hidden_states = (
|
379 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
380 |
+
)
|
381 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
382 |
+
|
383 |
+
outputs = self.model(
|
384 |
+
input_ids=input_ids,
|
385 |
+
attention_mask=attention_mask,
|
386 |
+
past_key_values=past_key_values,
|
387 |
+
inputs_embeds=inputs_embeds,
|
388 |
+
use_cache=use_cache,
|
389 |
+
output_attentions=output_attentions,
|
390 |
+
output_hidden_states=output_hidden_states,
|
391 |
+
return_dict=return_dict
|
392 |
+
)
|
393 |
+
|
394 |
+
hidden_states = outputs[0]
|
395 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
396 |
+
logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -num_logits_to_keep:])
|
397 |
+
|
398 |
+
loss = None
|
399 |
+
if labels is not None:
|
400 |
+
if self.config.fuse_cross_entropy:
|
401 |
+
if fuse_linear_and_cross_entropy:
|
402 |
+
loss_fct = FusedLinearCrossEntropyLoss()
|
403 |
+
else:
|
404 |
+
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
405 |
+
else:
|
406 |
+
loss_fct = nn.CrossEntropyLoss()
|
407 |
+
# Enable model parallelism
|
408 |
+
labels = labels.to(hidden_states.device)
|
409 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
410 |
+
if fuse_linear_and_cross_entropy:
|
411 |
+
loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
|
412 |
+
labels.view(-1),
|
413 |
+
self.lm_head.weight,
|
414 |
+
self.lm_head.bias)
|
415 |
+
else:
|
416 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
417 |
+
|
418 |
+
if not return_dict:
|
419 |
+
output = (logits,) + outputs[1:]
|
420 |
+
return (loss,) + output if loss is not None else output
|
421 |
+
|
422 |
+
return CausalLMOutputWithPast(
|
423 |
+
loss=loss,
|
424 |
+
logits=logits,
|
425 |
+
past_key_values=outputs.past_key_values,
|
426 |
+
hidden_states=outputs.hidden_states,
|
427 |
+
attentions=outputs.attentions,
|
428 |
+
)
|
fla/models/delta_net/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.delta_net.configuration_delta_net import DeltaNetConfig
|
6 |
+
from fla.models.delta_net.modeling_delta_net import (DeltaNetForCausalLM,
|
7 |
+
DeltaNetModel)
|
8 |
+
|
9 |
+
AutoConfig.register(DeltaNetConfig.model_type, DeltaNetConfig)
|
10 |
+
AutoModel.register(DeltaNetConfig, DeltaNetModel)
|
11 |
+
AutoModelForCausalLM.register(DeltaNetConfig, DeltaNetForCausalLM)
|
12 |
+
|
13 |
+
__all__ = ['DeltaNetConfig', 'DeltaNetForCausalLM', 'DeltaNetModel']
|
fla/models/delta_net/configuration_delta_net.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class DeltaNetConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'delta_net'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
attn_mode: str = "chunk",
|
16 |
+
hidden_size: int = 2048,
|
17 |
+
expand_k: int = 1,
|
18 |
+
expand_v: int = 1,
|
19 |
+
use_gate: bool = False,
|
20 |
+
use_short_conv: bool = True,
|
21 |
+
conv_size: int = 4,
|
22 |
+
use_beta: bool = True,
|
23 |
+
use_output_norm: bool = True,
|
24 |
+
num_heads: int = 16,
|
25 |
+
qk_norm: str = 'l2',
|
26 |
+
qk_activation: str = 'silu',
|
27 |
+
max_position_embeddings: int = 2048,
|
28 |
+
hidden_ratio: Optional[int] = 4,
|
29 |
+
intermediate_size: Optional[int] = None,
|
30 |
+
hidden_act: str = "swish",
|
31 |
+
num_hidden_layers: int = 24,
|
32 |
+
norm_first: bool = False,
|
33 |
+
norm_eps: float = 1e-6,
|
34 |
+
attn: Optional[Dict] = None,
|
35 |
+
use_cache: bool = True,
|
36 |
+
pad_token_id: int = None,
|
37 |
+
bos_token_id: int = 1,
|
38 |
+
eos_token_id: int = 2,
|
39 |
+
tie_word_embeddings: bool = False,
|
40 |
+
initializer_range: float = 0.02,
|
41 |
+
fuse_cross_entropy: bool = True,
|
42 |
+
vocab_size: int = 32000,
|
43 |
+
**kwargs
|
44 |
+
):
|
45 |
+
self.attn_mode = attn_mode
|
46 |
+
self.hidden_size = hidden_size
|
47 |
+
self.expand_k = expand_k
|
48 |
+
self.expand_v = expand_v
|
49 |
+
self.use_gate = use_gate
|
50 |
+
self.use_short_conv = use_short_conv
|
51 |
+
self.conv_size = conv_size
|
52 |
+
self.use_beta = use_beta
|
53 |
+
self.use_output_norm = use_output_norm
|
54 |
+
self.num_heads = num_heads
|
55 |
+
self.qk_norm = qk_norm
|
56 |
+
self.qk_activation = qk_activation
|
57 |
+
self.max_position_embeddings = max_position_embeddings
|
58 |
+
|
59 |
+
self.hidden_ratio = hidden_ratio
|
60 |
+
self.intermediate_size = intermediate_size
|
61 |
+
self.hidden_act = hidden_act
|
62 |
+
self.num_hidden_layers = num_hidden_layers
|
63 |
+
self.norm_first = norm_first
|
64 |
+
self.norm_eps = norm_eps
|
65 |
+
self.attn = attn
|
66 |
+
self.use_cache = use_cache
|
67 |
+
self.initializer_range = initializer_range
|
68 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
69 |
+
self.vocab_size = vocab_size
|
70 |
+
|
71 |
+
if attn is not None:
|
72 |
+
if not isinstance(attn, Dict):
|
73 |
+
raise ValueError("attn must be a dictionary")
|
74 |
+
if 'layers' not in attn:
|
75 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
76 |
+
if 'num_heads' not in attn:
|
77 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
78 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
79 |
+
attn['window_size'] = attn.get('window_size', None)
|
80 |
+
|
81 |
+
super().__init__(
|
82 |
+
pad_token_id=pad_token_id,
|
83 |
+
bos_token_id=bos_token_id,
|
84 |
+
eos_token_id=eos_token_id,
|
85 |
+
tie_word_embeddings=tie_word_embeddings,
|
86 |
+
**kwargs,
|
87 |
+
)
|
fla/models/delta_net/modeling_delta_net.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.activations import ACT2FN
|
13 |
+
from transformers.generation import GenerationMixin
|
14 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
15 |
+
CausalLMOutputWithPast)
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
from fla.layers.attn import Attention
|
20 |
+
from fla.layers.delta_net import DeltaNet
|
21 |
+
from fla.models.delta_net.configuration_delta_net import DeltaNetConfig
|
22 |
+
from fla.models.utils import Cache
|
23 |
+
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
|
24 |
+
RMSNorm)
|
25 |
+
from fla.modules.activations import swiglu_linear
|
26 |
+
from fla.modules.layernorm import rms_norm_linear
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
class DeltaNetMLP(nn.Module):
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
hidden_size: int,
|
36 |
+
hidden_ratio: Optional[int] = None,
|
37 |
+
intermediate_size: Optional[int] = None,
|
38 |
+
hidden_act: str = 'swish',
|
39 |
+
norm_first: bool = True,
|
40 |
+
norm_eps: float = 1e-5
|
41 |
+
) -> DeltaNetMLP:
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
self.hidden_size = hidden_size
|
45 |
+
# the final number of params is `hidden_ratio * hidden_size^2`
|
46 |
+
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
47 |
+
if hidden_ratio is None:
|
48 |
+
hidden_ratio = 4
|
49 |
+
if intermediate_size is None:
|
50 |
+
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
51 |
+
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
52 |
+
self.hidden_ratio = hidden_ratio
|
53 |
+
self.intermediate_size = intermediate_size
|
54 |
+
self.norm_first = norm_first
|
55 |
+
|
56 |
+
if norm_first:
|
57 |
+
self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps)
|
58 |
+
|
59 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
60 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
61 |
+
self.act_fn = ACT2FN[hidden_act]
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
if self.norm_first:
|
65 |
+
x = rms_norm_linear(x, self.norm.weight, self.norm.bias, self.gate_proj.weight, self.gate_proj.bias)
|
66 |
+
else:
|
67 |
+
x = self.gate_proj(x)
|
68 |
+
gate, y = x.chunk(2, -1)
|
69 |
+
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
70 |
+
|
71 |
+
|
72 |
+
class DeltaNetBlock(nn.Module):
|
73 |
+
def __init__(self, config: DeltaNetConfig, layer_idx: int):
|
74 |
+
super().__init__()
|
75 |
+
self.hidden_size = config.hidden_size
|
76 |
+
|
77 |
+
if not config.norm_first:
|
78 |
+
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
79 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
80 |
+
self.attn = Attention(
|
81 |
+
hidden_size=config.hidden_size,
|
82 |
+
num_heads=config.attn['num_heads'],
|
83 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
84 |
+
window_size=config.attn['window_size'],
|
85 |
+
max_position_embeddings=config.max_position_embeddings,
|
86 |
+
layer_idx=layer_idx
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
self.attn = DeltaNet(
|
90 |
+
mode=config.attn_mode,
|
91 |
+
hidden_size=config.hidden_size,
|
92 |
+
expand_k=config.expand_k,
|
93 |
+
expand_v=config.expand_v,
|
94 |
+
num_heads=config.num_heads,
|
95 |
+
use_gate=config.use_gate,
|
96 |
+
use_beta=config.use_beta,
|
97 |
+
use_short_conv=config.use_short_conv,
|
98 |
+
use_output_norm=config.use_output_norm,
|
99 |
+
conv_size=config.conv_size,
|
100 |
+
qk_norm=config.qk_norm,
|
101 |
+
qk_activation=config.qk_activation,
|
102 |
+
norm_first=config.norm_first,
|
103 |
+
norm_eps=config.norm_eps,
|
104 |
+
layer_idx=layer_idx
|
105 |
+
)
|
106 |
+
if not config.norm_first:
|
107 |
+
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
108 |
+
self.mlp = DeltaNetMLP(
|
109 |
+
hidden_size=config.hidden_size,
|
110 |
+
hidden_ratio=config.hidden_ratio,
|
111 |
+
intermediate_size=config.intermediate_size,
|
112 |
+
hidden_act=config.hidden_act,
|
113 |
+
norm_first=config.norm_first,
|
114 |
+
norm_eps=config.norm_eps
|
115 |
+
)
|
116 |
+
|
117 |
+
def forward(
|
118 |
+
self,
|
119 |
+
hidden_states: torch.Tensor,
|
120 |
+
attention_mask: Optional[torch.Tensor] = None,
|
121 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
122 |
+
use_cache: Optional[bool] = False,
|
123 |
+
output_attentions: Optional[bool] = False,
|
124 |
+
**kwargs
|
125 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
126 |
+
|
127 |
+
residual = hidden_states
|
128 |
+
if hasattr(self, 'attn_norm'):
|
129 |
+
hidden_states = self.attn_norm(hidden_states)
|
130 |
+
hidden_states, attentions, past_key_values = self.attn(
|
131 |
+
hidden_states=hidden_states,
|
132 |
+
attention_mask=attention_mask,
|
133 |
+
past_key_values=past_key_values,
|
134 |
+
use_cache=use_cache,
|
135 |
+
output_attentions=output_attentions
|
136 |
+
)
|
137 |
+
if hasattr(self, 'mlp_norm'):
|
138 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
139 |
+
else:
|
140 |
+
hidden_states = residual + hidden_states
|
141 |
+
residual = hidden_states
|
142 |
+
hidden_states = self.mlp(hidden_states)
|
143 |
+
hidden_states = residual + hidden_states
|
144 |
+
|
145 |
+
outputs = (hidden_states, attentions, past_key_values)
|
146 |
+
|
147 |
+
return outputs
|
148 |
+
|
149 |
+
|
150 |
+
class DeltaNetPreTrainedModel(PreTrainedModel):
|
151 |
+
|
152 |
+
config_class = DeltaNetConfig
|
153 |
+
supports_gradient_checkpointing = True
|
154 |
+
_no_split_modules = ['DeltaNetBlock']
|
155 |
+
|
156 |
+
def __init__(self, *inputs, **kwargs):
|
157 |
+
super().__init__(*inputs, **kwargs)
|
158 |
+
|
159 |
+
def _init_weights(
|
160 |
+
self,
|
161 |
+
module: nn.Module,
|
162 |
+
rescale_prenorm_residual: bool = True,
|
163 |
+
num_residuals_per_layer: int = 2,
|
164 |
+
):
|
165 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
166 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
167 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
168 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
169 |
+
if module.bias is not None:
|
170 |
+
nn.init.zeros_(module.bias)
|
171 |
+
elif isinstance(module, nn.Embedding):
|
172 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
173 |
+
if module.padding_idx is not None:
|
174 |
+
module.weight.data[module.padding_idx].zero_()
|
175 |
+
|
176 |
+
if rescale_prenorm_residual:
|
177 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
178 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
179 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
180 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
181 |
+
#
|
182 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
183 |
+
for name, p in module.named_parameters():
|
184 |
+
if name in ["o_proj.weight", "down_proj.weight"]:
|
185 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
186 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
187 |
+
# We need to reinit p since this code could be called multiple times
|
188 |
+
# Having just p *= scale would repeatedly scale it down
|
189 |
+
with torch.no_grad():
|
190 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
191 |
+
|
192 |
+
|
193 |
+
class DeltaNetModel(DeltaNetPreTrainedModel):
|
194 |
+
|
195 |
+
def __init__(self, config: DeltaNetConfig):
|
196 |
+
super().__init__(config)
|
197 |
+
self.padding_idx = config.pad_token_id
|
198 |
+
self.vocab_size = config.vocab_size
|
199 |
+
|
200 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
201 |
+
self.layers = nn.ModuleList([DeltaNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
202 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
203 |
+
|
204 |
+
self.gradient_checkpointing = False
|
205 |
+
|
206 |
+
self.post_init()
|
207 |
+
|
208 |
+
def get_input_embeddings(self):
|
209 |
+
return self.embeddings
|
210 |
+
|
211 |
+
def set_input_embeddings(self, value):
|
212 |
+
self.embeddings = value
|
213 |
+
|
214 |
+
def forward(
|
215 |
+
self,
|
216 |
+
input_ids: Optional[torch.LongTensor] = None,
|
217 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
218 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
219 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
220 |
+
use_cache: Optional[bool] = None,
|
221 |
+
output_attentions: Optional[bool] = None,
|
222 |
+
output_hidden_states: Optional[bool] = None,
|
223 |
+
return_dict: Optional[bool] = None
|
224 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
225 |
+
if output_attentions:
|
226 |
+
warnings.warn("`DeltaNetModel` does not `output_attentions` now, setting it to `False`.")
|
227 |
+
output_attentions = False
|
228 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
229 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
230 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
231 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
232 |
+
|
233 |
+
# retrieve input_ids and inputs_embeds
|
234 |
+
if input_ids is not None and inputs_embeds is not None:
|
235 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
236 |
+
if input_ids is None and inputs_embeds is None:
|
237 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
238 |
+
|
239 |
+
if inputs_embeds is None:
|
240 |
+
inputs_embeds = self.embeddings(input_ids)
|
241 |
+
hidden_states = inputs_embeds
|
242 |
+
|
243 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
244 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
245 |
+
|
246 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
247 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
248 |
+
use_cache = False
|
249 |
+
|
250 |
+
all_hidden_states = () if output_hidden_states else None
|
251 |
+
all_attns = () if output_attentions else None
|
252 |
+
for layer in self.layers:
|
253 |
+
if output_hidden_states:
|
254 |
+
all_hidden_states += (hidden_states,)
|
255 |
+
|
256 |
+
if self.gradient_checkpointing and self.training:
|
257 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
258 |
+
layer.__call__,
|
259 |
+
hidden_states,
|
260 |
+
attention_mask,
|
261 |
+
past_key_values,
|
262 |
+
use_cache,
|
263 |
+
output_attentions
|
264 |
+
)
|
265 |
+
else:
|
266 |
+
hidden_states, attentions, past_key_values = layer(
|
267 |
+
hidden_states,
|
268 |
+
attention_mask=attention_mask,
|
269 |
+
past_key_values=past_key_values,
|
270 |
+
use_cache=use_cache,
|
271 |
+
output_attentions=output_attentions
|
272 |
+
)
|
273 |
+
|
274 |
+
if output_attentions:
|
275 |
+
all_attns += (attentions,)
|
276 |
+
|
277 |
+
hidden_states = self.norm(hidden_states)
|
278 |
+
|
279 |
+
# add hidden states from the last decoder layer
|
280 |
+
if output_hidden_states:
|
281 |
+
all_hidden_states += (hidden_states,)
|
282 |
+
|
283 |
+
next_cache = past_key_values
|
284 |
+
if not return_dict:
|
285 |
+
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
|
286 |
+
return BaseModelOutputWithPast(
|
287 |
+
last_hidden_state=hidden_states,
|
288 |
+
past_key_values=next_cache,
|
289 |
+
hidden_states=all_hidden_states,
|
290 |
+
attentions=all_attns
|
291 |
+
)
|
292 |
+
|
293 |
+
|
294 |
+
class DeltaNetForCausalLM(DeltaNetPreTrainedModel, GenerationMixin):
|
295 |
+
|
296 |
+
_tied_weights_keys = ["lm_head.weight"]
|
297 |
+
|
298 |
+
def __init__(self, config):
|
299 |
+
super().__init__(config)
|
300 |
+
self.model = DeltaNetModel(config)
|
301 |
+
self.vocab_size = config.vocab_size
|
302 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
303 |
+
|
304 |
+
# Initialize weights and apply final processing
|
305 |
+
self.post_init()
|
306 |
+
|
307 |
+
def get_input_embeddings(self):
|
308 |
+
return self.model.embeddings
|
309 |
+
|
310 |
+
def set_input_embeddings(self, value):
|
311 |
+
self.model.embeddings = value
|
312 |
+
|
313 |
+
def get_output_embeddings(self):
|
314 |
+
return self.lm_head
|
315 |
+
|
316 |
+
def set_output_embeddings(self, new_embeddings):
|
317 |
+
self.lm_head = new_embeddings
|
318 |
+
|
319 |
+
def set_decoder(self, decoder):
|
320 |
+
self.model = decoder
|
321 |
+
|
322 |
+
def get_decoder(self):
|
323 |
+
return self.model
|
324 |
+
|
325 |
+
def generate(self, *args, **kwargs):
|
326 |
+
try:
|
327 |
+
return super().generate(*args, **kwargs)
|
328 |
+
except AttributeError as exception:
|
329 |
+
if 'past_key_values' in str(exception):
|
330 |
+
raise AttributeError(
|
331 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
332 |
+
f"which is not supported for {self.__class__.__name__}. "
|
333 |
+
f"Try another generation strategy instead. "
|
334 |
+
f"For the available generation strategies, check this doc: "
|
335 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
336 |
+
)
|
337 |
+
else:
|
338 |
+
raise exception
|
339 |
+
|
340 |
+
def prepare_inputs_for_generation(
|
341 |
+
self,
|
342 |
+
input_ids: torch.LongTensor = None,
|
343 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
344 |
+
attention_mask: Optional[torch.Tensor] = None,
|
345 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
346 |
+
use_cache: bool = True,
|
347 |
+
num_logits_to_keep: Optional[int] = None,
|
348 |
+
**kwargs
|
349 |
+
):
|
350 |
+
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
351 |
+
if past_key_values is not None:
|
352 |
+
input_ids = input_ids[:, -1:]
|
353 |
+
|
354 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
355 |
+
if inputs_embeds is not None and past_key_values is None:
|
356 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
357 |
+
else:
|
358 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
359 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
360 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
361 |
+
# TODO: use `next_tokens` directly instead.
|
362 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
363 |
+
|
364 |
+
if num_logits_to_keep is not None:
|
365 |
+
model_inputs['num_logits_to_keep'] = num_logits_to_keep
|
366 |
+
|
367 |
+
model_inputs.update({
|
368 |
+
'past_key_values': past_key_values,
|
369 |
+
'use_cache': use_cache,
|
370 |
+
'attention_mask': attention_mask,
|
371 |
+
'num_logits_to_keep': num_logits_to_keep,
|
372 |
+
})
|
373 |
+
return model_inputs
|
374 |
+
|
375 |
+
def forward(
|
376 |
+
self,
|
377 |
+
input_ids: torch.LongTensor = None,
|
378 |
+
attention_mask: Optional[torch.Tensor] = None,
|
379 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
380 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
381 |
+
labels: Optional[torch.LongTensor] = None,
|
382 |
+
use_cache: Optional[bool] = None,
|
383 |
+
output_attentions: Optional[bool] = None,
|
384 |
+
output_hidden_states: Optional[bool] = None,
|
385 |
+
return_dict: Optional[bool] = None,
|
386 |
+
num_logits_to_keep: Optional[int] = 0
|
387 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
388 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
389 |
+
output_hidden_states = (
|
390 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
391 |
+
)
|
392 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
393 |
+
|
394 |
+
outputs = self.model(
|
395 |
+
input_ids=input_ids,
|
396 |
+
attention_mask=attention_mask,
|
397 |
+
inputs_embeds=inputs_embeds,
|
398 |
+
past_key_values=past_key_values,
|
399 |
+
use_cache=use_cache,
|
400 |
+
output_attentions=output_attentions,
|
401 |
+
output_hidden_states=output_hidden_states,
|
402 |
+
return_dict=return_dict
|
403 |
+
)
|
404 |
+
|
405 |
+
hidden_states = outputs[0]
|
406 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
407 |
+
logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -num_logits_to_keep:])
|
408 |
+
|
409 |
+
loss = None
|
410 |
+
if labels is not None:
|
411 |
+
if self.config.fuse_cross_entropy:
|
412 |
+
if fuse_linear_and_cross_entropy:
|
413 |
+
loss_fct = FusedLinearCrossEntropyLoss()
|
414 |
+
else:
|
415 |
+
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
416 |
+
else:
|
417 |
+
loss_fct = nn.CrossEntropyLoss()
|
418 |
+
# Enable model parallelism
|
419 |
+
labels = labels.to(hidden_states.device)
|
420 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
421 |
+
if fuse_linear_and_cross_entropy:
|
422 |
+
loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
|
423 |
+
labels.view(-1),
|
424 |
+
self.lm_head.weight,
|
425 |
+
self.lm_head.bias)
|
426 |
+
else:
|
427 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
428 |
+
|
429 |
+
if not return_dict:
|
430 |
+
output = (logits,) + outputs[1:]
|
431 |
+
return (loss,) + output if loss is not None else output
|
432 |
+
|
433 |
+
return CausalLMOutputWithPast(
|
434 |
+
loss=loss,
|
435 |
+
logits=logits,
|
436 |
+
past_key_values=outputs.past_key_values,
|
437 |
+
hidden_states=outputs.hidden_states,
|
438 |
+
attentions=outputs.attentions,
|
439 |
+
)
|
fla/models/gla/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.gla.configuration_gla import GLAConfig
|
6 |
+
from fla.models.gla.modeling_gla import GLAForCausalLM, GLAModel
|
7 |
+
|
8 |
+
AutoConfig.register(GLAConfig.model_type, GLAConfig)
|
9 |
+
AutoModel.register(GLAConfig, GLAModel)
|
10 |
+
AutoModelForCausalLM.register(GLAConfig, GLAForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['GLAConfig', 'GLAForCausalLM', 'GLAModel']
|
fla/models/gla/configuration_gla.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class GLAConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'gla'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
expand_k: int = 0.5,
|
17 |
+
expand_v: int = 1,
|
18 |
+
hidden_ratio: Optional[int] = 4,
|
19 |
+
intermediate_size: Optional[int] = None,
|
20 |
+
num_hidden_layers: int = 24,
|
21 |
+
num_heads: int = 4,
|
22 |
+
num_kv_heads: Optional[int] = None,
|
23 |
+
feature_map: Optional[str] = None,
|
24 |
+
attn_mode: str = "chunk",
|
25 |
+
use_short_conv: bool = False,
|
26 |
+
conv_size: int = 4,
|
27 |
+
use_output_gate: bool = True,
|
28 |
+
clamp_min: Optional[float] = None,
|
29 |
+
hidden_act: str = "swish",
|
30 |
+
max_position_embeddings: int = 2048,
|
31 |
+
elementwise_affine: Optional[bool] = True,
|
32 |
+
norm_eps: float = 1e-6,
|
33 |
+
use_gk: bool = True,
|
34 |
+
use_gv: bool = False,
|
35 |
+
attn: Optional[Dict] = None,
|
36 |
+
use_cache: bool = True,
|
37 |
+
pad_token_id: int = None,
|
38 |
+
bos_token_id: int = 1,
|
39 |
+
eos_token_id: int = 2,
|
40 |
+
tie_word_embeddings: bool = False,
|
41 |
+
initializer_range: float = 0.02,
|
42 |
+
fuse_norm: bool = True,
|
43 |
+
fuse_cross_entropy: bool = True,
|
44 |
+
vocab_size: int = 32000,
|
45 |
+
**kwargs
|
46 |
+
):
|
47 |
+
self.hidden_size = hidden_size
|
48 |
+
self.expand_k = expand_k
|
49 |
+
self.expand_v = expand_v
|
50 |
+
self.hidden_ratio = hidden_ratio
|
51 |
+
self.intermediate_size = intermediate_size
|
52 |
+
self.num_hidden_layers = num_hidden_layers
|
53 |
+
self.num_heads = num_heads
|
54 |
+
self.num_kv_heads = num_kv_heads
|
55 |
+
self.feature_map = feature_map
|
56 |
+
self.attn_mode = attn_mode
|
57 |
+
self.use_short_conv = use_short_conv
|
58 |
+
self.conv_size = conv_size
|
59 |
+
self.use_output_gate = use_output_gate
|
60 |
+
self.clamp_min = clamp_min
|
61 |
+
self.hidden_act = hidden_act
|
62 |
+
self.max_position_embeddings = max_position_embeddings
|
63 |
+
self.elementwise_affine = elementwise_affine
|
64 |
+
self.norm_eps = norm_eps
|
65 |
+
self.use_gk = use_gk
|
66 |
+
self.use_gv = use_gv
|
67 |
+
self.attn = attn
|
68 |
+
self.use_cache = use_cache
|
69 |
+
self.initializer_range = initializer_range
|
70 |
+
self.fuse_norm = fuse_norm
|
71 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
72 |
+
self.vocab_size = vocab_size
|
73 |
+
|
74 |
+
if attn is not None:
|
75 |
+
if not isinstance(attn, Dict):
|
76 |
+
raise ValueError("attn must be a dictionary")
|
77 |
+
if 'layers' not in attn:
|
78 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
79 |
+
if 'num_heads' not in attn:
|
80 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
81 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
82 |
+
attn['window_size'] = attn.get('window_size', None)
|
83 |
+
|
84 |
+
super().__init__(
|
85 |
+
pad_token_id=pad_token_id,
|
86 |
+
bos_token_id=bos_token_id,
|
87 |
+
eos_token_id=eos_token_id,
|
88 |
+
tie_word_embeddings=tie_word_embeddings,
|
89 |
+
**kwargs,
|
90 |
+
)
|
fla/models/gla/modeling_gla.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.activations import ACT2FN
|
13 |
+
from transformers.generation import GenerationMixin
|
14 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
15 |
+
CausalLMOutputWithPast)
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
from fla.layers.attn import Attention
|
20 |
+
from fla.layers.gla import GatedLinearAttention
|
21 |
+
from fla.models.gla.configuration_gla import GLAConfig
|
22 |
+
from fla.models.utils import Cache
|
23 |
+
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
|
24 |
+
RMSNorm)
|
25 |
+
from fla.modules.activations import swiglu_linear
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class GLAMLP(nn.Module):
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
hidden_size: int,
|
35 |
+
hidden_ratio: Optional[int] = None,
|
36 |
+
intermediate_size: Optional[int] = None,
|
37 |
+
hidden_act: str = 'swish'
|
38 |
+
) -> GLAMLP:
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.hidden_size = hidden_size
|
42 |
+
# the final number of params is `hidden_ratio * hidden_size^2`
|
43 |
+
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
44 |
+
if hidden_ratio is None:
|
45 |
+
hidden_ratio = 4
|
46 |
+
if intermediate_size is None:
|
47 |
+
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
48 |
+
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
49 |
+
self.hidden_ratio = hidden_ratio
|
50 |
+
self.intermediate_size = intermediate_size
|
51 |
+
|
52 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
53 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
54 |
+
self.act_fn = ACT2FN[hidden_act]
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
y = self.gate_proj(x)
|
58 |
+
gate, y = y.chunk(2, -1)
|
59 |
+
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
60 |
+
|
61 |
+
|
62 |
+
class GLABlock(nn.Module):
|
63 |
+
def __init__(self, config: GLAConfig, layer_idx: int):
|
64 |
+
super().__init__()
|
65 |
+
self.hidden_size = config.hidden_size
|
66 |
+
|
67 |
+
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
68 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
69 |
+
self.attn = Attention(
|
70 |
+
hidden_size=config.hidden_size,
|
71 |
+
num_heads=config.attn['num_heads'],
|
72 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
73 |
+
window_size=config.attn['window_size'],
|
74 |
+
max_position_embeddings=config.max_position_embeddings,
|
75 |
+
layer_idx=layer_idx
|
76 |
+
)
|
77 |
+
else:
|
78 |
+
self.attn = GatedLinearAttention(
|
79 |
+
mode=config.attn_mode,
|
80 |
+
hidden_size=config.hidden_size,
|
81 |
+
expand_k=config.expand_k,
|
82 |
+
expand_v=config.expand_v,
|
83 |
+
num_heads=config.num_heads,
|
84 |
+
num_kv_heads=config.num_kv_heads,
|
85 |
+
feature_map=config.feature_map,
|
86 |
+
use_short_conv=config.use_short_conv,
|
87 |
+
conv_size=config.conv_size,
|
88 |
+
use_output_gate=config.use_output_gate,
|
89 |
+
gate_fn=config.hidden_act,
|
90 |
+
elementwise_affine=config.elementwise_affine,
|
91 |
+
norm_eps=config.norm_eps,
|
92 |
+
clamp_min=config.clamp_min,
|
93 |
+
fuse_norm=config.fuse_norm,
|
94 |
+
layer_idx=layer_idx
|
95 |
+
)
|
96 |
+
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
97 |
+
self.mlp = GLAMLP(
|
98 |
+
hidden_size=config.hidden_size,
|
99 |
+
hidden_ratio=config.hidden_ratio,
|
100 |
+
intermediate_size=config.intermediate_size,
|
101 |
+
hidden_act=config.hidden_act
|
102 |
+
)
|
103 |
+
|
104 |
+
def forward(
|
105 |
+
self,
|
106 |
+
hidden_states: torch.Tensor,
|
107 |
+
attention_mask: Optional[torch.Tensor] = None,
|
108 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
109 |
+
use_cache: Optional[bool] = False,
|
110 |
+
output_attentions: Optional[bool] = False,
|
111 |
+
**kwargs,
|
112 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
113 |
+
residual = hidden_states
|
114 |
+
hidden_states = self.attn_norm(hidden_states)
|
115 |
+
hidden_states, attentions, past_key_values = self.attn(
|
116 |
+
hidden_states=hidden_states,
|
117 |
+
attention_mask=attention_mask,
|
118 |
+
past_key_values=past_key_values,
|
119 |
+
use_cache=use_cache,
|
120 |
+
output_attentions=output_attentions
|
121 |
+
)
|
122 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
123 |
+
hidden_states = self.mlp(hidden_states)
|
124 |
+
hidden_states = residual + hidden_states
|
125 |
+
|
126 |
+
outputs = (hidden_states, attentions, past_key_values)
|
127 |
+
|
128 |
+
return outputs
|
129 |
+
|
130 |
+
|
131 |
+
class GLAPreTrainedModel(PreTrainedModel):
|
132 |
+
|
133 |
+
config_class = GLAConfig
|
134 |
+
supports_gradient_checkpointing = True
|
135 |
+
_no_split_modules = ['GLABlock']
|
136 |
+
|
137 |
+
def __init__(self, *inputs, **kwargs):
|
138 |
+
super().__init__(*inputs, **kwargs)
|
139 |
+
|
140 |
+
def _init_weights(
|
141 |
+
self,
|
142 |
+
module: nn.Module,
|
143 |
+
rescale_prenorm_residual: bool = True,
|
144 |
+
num_residuals_per_layer: int = 2,
|
145 |
+
):
|
146 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
147 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
148 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
149 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
150 |
+
if module.bias is not None:
|
151 |
+
nn.init.zeros_(module.bias)
|
152 |
+
elif isinstance(module, nn.Embedding):
|
153 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
154 |
+
if module.padding_idx is not None:
|
155 |
+
module.weight.data[module.padding_idx].zero_()
|
156 |
+
|
157 |
+
if rescale_prenorm_residual:
|
158 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
159 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
160 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
161 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
162 |
+
#
|
163 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
164 |
+
for name, p in module.named_parameters():
|
165 |
+
if name in ["o_proj.weight", "down_proj.weight"]:
|
166 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
167 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
168 |
+
# We need to reinit p since this code could be called multiple times
|
169 |
+
# Having just p *= scale would repeatedly scale it down
|
170 |
+
with torch.no_grad():
|
171 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
172 |
+
|
173 |
+
|
174 |
+
class GLAModel(GLAPreTrainedModel):
|
175 |
+
|
176 |
+
def __init__(self, config: GLAConfig):
|
177 |
+
super().__init__(config)
|
178 |
+
self.padding_idx = config.pad_token_id
|
179 |
+
self.vocab_size = config.vocab_size
|
180 |
+
|
181 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
182 |
+
self.layers = nn.ModuleList([GLABlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
183 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
184 |
+
|
185 |
+
self.gradient_checkpointing = False
|
186 |
+
|
187 |
+
self.post_init()
|
188 |
+
|
189 |
+
def get_input_embeddings(self):
|
190 |
+
return self.embeddings
|
191 |
+
|
192 |
+
def set_input_embeddings(self, value):
|
193 |
+
self.embeddings = value
|
194 |
+
|
195 |
+
def forward(
|
196 |
+
self,
|
197 |
+
input_ids: Optional[torch.LongTensor] = None,
|
198 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
199 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
200 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
201 |
+
use_cache: Optional[bool] = None,
|
202 |
+
output_attentions: Optional[bool] = None,
|
203 |
+
output_hidden_states: Optional[bool] = None,
|
204 |
+
return_dict: Optional[bool] = None
|
205 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
206 |
+
if output_attentions:
|
207 |
+
warnings.warn("`GLAModel` does not `output_attentions` now, setting it to `False`.")
|
208 |
+
output_attentions = False
|
209 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
210 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
211 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
212 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
213 |
+
|
214 |
+
# retrieve input_ids and inputs_embeds
|
215 |
+
if input_ids is not None and inputs_embeds is not None:
|
216 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
217 |
+
if input_ids is None and inputs_embeds is None:
|
218 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
219 |
+
|
220 |
+
if inputs_embeds is None:
|
221 |
+
inputs_embeds = self.embeddings(input_ids)
|
222 |
+
hidden_states = inputs_embeds
|
223 |
+
|
224 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
225 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
226 |
+
|
227 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
228 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
229 |
+
use_cache = False
|
230 |
+
|
231 |
+
all_hidden_states = () if output_hidden_states else None
|
232 |
+
all_attns = () if output_attentions else None
|
233 |
+
for layer in self.layers:
|
234 |
+
if output_hidden_states:
|
235 |
+
all_hidden_states += (hidden_states,)
|
236 |
+
|
237 |
+
if self.gradient_checkpointing and self.training:
|
238 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
239 |
+
layer.__call__,
|
240 |
+
hidden_states,
|
241 |
+
attention_mask,
|
242 |
+
past_key_values,
|
243 |
+
use_cache,
|
244 |
+
output_attentions
|
245 |
+
)
|
246 |
+
else:
|
247 |
+
hidden_states, attentions, past_key_values = layer(
|
248 |
+
hidden_states,
|
249 |
+
attention_mask=attention_mask,
|
250 |
+
past_key_values=past_key_values,
|
251 |
+
use_cache=use_cache,
|
252 |
+
output_attentions=output_attentions
|
253 |
+
)
|
254 |
+
|
255 |
+
if output_attentions:
|
256 |
+
all_attns += (attentions,)
|
257 |
+
|
258 |
+
hidden_states = self.norm(hidden_states)
|
259 |
+
|
260 |
+
# add hidden states from the last decoder layer
|
261 |
+
if output_hidden_states:
|
262 |
+
all_hidden_states += (hidden_states,)
|
263 |
+
|
264 |
+
if not return_dict:
|
265 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
266 |
+
return BaseModelOutputWithPast(
|
267 |
+
last_hidden_state=hidden_states,
|
268 |
+
past_key_values=past_key_values,
|
269 |
+
hidden_states=all_hidden_states,
|
270 |
+
attentions=all_attns
|
271 |
+
)
|
272 |
+
|
273 |
+
|
274 |
+
class GLAForCausalLM(GLAPreTrainedModel, GenerationMixin):
|
275 |
+
|
276 |
+
_tied_weights_keys = ["lm_head.weight"]
|
277 |
+
|
278 |
+
def __init__(self, config):
|
279 |
+
super().__init__(config)
|
280 |
+
self.model = GLAModel(config)
|
281 |
+
self.vocab_size = config.vocab_size
|
282 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
283 |
+
|
284 |
+
# Initialize weights and apply final processing
|
285 |
+
self.post_init()
|
286 |
+
|
287 |
+
def get_input_embeddings(self):
|
288 |
+
return self.model.embeddings
|
289 |
+
|
290 |
+
def set_input_embeddings(self, value):
|
291 |
+
self.model.embeddings = value
|
292 |
+
|
293 |
+
def get_output_embeddings(self):
|
294 |
+
return self.lm_head
|
295 |
+
|
296 |
+
def set_output_embeddings(self, new_embeddings):
|
297 |
+
self.lm_head = new_embeddings
|
298 |
+
|
299 |
+
def set_decoder(self, decoder):
|
300 |
+
self.model = decoder
|
301 |
+
|
302 |
+
def get_decoder(self):
|
303 |
+
return self.model
|
304 |
+
|
305 |
+
def generate(self, *args, **kwargs):
|
306 |
+
try:
|
307 |
+
return super().generate(*args, **kwargs)
|
308 |
+
except AttributeError as exception:
|
309 |
+
if 'past_key_values' in str(exception):
|
310 |
+
raise AttributeError(
|
311 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
312 |
+
f"which is not supported for {self.__class__.__name__}. "
|
313 |
+
f"Try another generation strategy instead. "
|
314 |
+
f"For the available generation strategies, check this doc: "
|
315 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
raise exception
|
319 |
+
|
320 |
+
def prepare_inputs_for_generation(
|
321 |
+
self,
|
322 |
+
input_ids: torch.LongTensor = None,
|
323 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
324 |
+
attention_mask: Optional[torch.Tensor] = None,
|
325 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
326 |
+
use_cache: bool = True,
|
327 |
+
num_logits_to_keep: Optional[int] = None,
|
328 |
+
**kwargs
|
329 |
+
):
|
330 |
+
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
331 |
+
if past_key_values is not None:
|
332 |
+
input_ids = input_ids[:, -1:]
|
333 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
334 |
+
if inputs_embeds is not None and past_key_values is None:
|
335 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
336 |
+
else:
|
337 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
338 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
339 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
340 |
+
# TODO: use `next_tokens` directly instead.
|
341 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
342 |
+
|
343 |
+
if num_logits_to_keep is not None:
|
344 |
+
model_inputs['num_logits_to_keep'] = num_logits_to_keep
|
345 |
+
|
346 |
+
model_inputs.update({
|
347 |
+
'past_key_values': past_key_values,
|
348 |
+
'use_cache': use_cache,
|
349 |
+
'attention_mask': attention_mask,
|
350 |
+
'num_logits_to_keep': num_logits_to_keep,
|
351 |
+
})
|
352 |
+
return model_inputs
|
353 |
+
|
354 |
+
def forward(
|
355 |
+
self,
|
356 |
+
input_ids: torch.LongTensor = None,
|
357 |
+
attention_mask: Optional[torch.Tensor] = None,
|
358 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
359 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
360 |
+
labels: Optional[torch.LongTensor] = None,
|
361 |
+
use_cache: Optional[bool] = None,
|
362 |
+
output_attentions: Optional[bool] = None,
|
363 |
+
output_hidden_states: Optional[bool] = None,
|
364 |
+
return_dict: Optional[bool] = None,
|
365 |
+
num_logits_to_keep: Optional[int] = 0
|
366 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
367 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
368 |
+
output_hidden_states = (
|
369 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
370 |
+
)
|
371 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
372 |
+
|
373 |
+
outputs = self.model(
|
374 |
+
input_ids=input_ids,
|
375 |
+
attention_mask=attention_mask,
|
376 |
+
inputs_embeds=inputs_embeds,
|
377 |
+
past_key_values=past_key_values,
|
378 |
+
use_cache=use_cache,
|
379 |
+
output_attentions=output_attentions,
|
380 |
+
output_hidden_states=output_hidden_states,
|
381 |
+
return_dict=return_dict
|
382 |
+
)
|
383 |
+
|
384 |
+
hidden_states = outputs[0]
|
385 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
386 |
+
logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -num_logits_to_keep:])
|
387 |
+
|
388 |
+
loss = None
|
389 |
+
if labels is not None:
|
390 |
+
if self.config.fuse_cross_entropy:
|
391 |
+
if fuse_linear_and_cross_entropy:
|
392 |
+
loss_fct = FusedLinearCrossEntropyLoss()
|
393 |
+
else:
|
394 |
+
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
395 |
+
else:
|
396 |
+
loss_fct = nn.CrossEntropyLoss()
|
397 |
+
# Enable model parallelism
|
398 |
+
labels = labels.to(hidden_states.device)
|
399 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
400 |
+
if fuse_linear_and_cross_entropy:
|
401 |
+
loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
|
402 |
+
labels.view(-1),
|
403 |
+
self.lm_head.weight,
|
404 |
+
self.lm_head.bias)
|
405 |
+
else:
|
406 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
407 |
+
|
408 |
+
if not return_dict:
|
409 |
+
output = (logits,) + outputs[1:]
|
410 |
+
return (loss,) + output if loss is not None else output
|
411 |
+
|
412 |
+
return CausalLMOutputWithPast(
|
413 |
+
loss=loss,
|
414 |
+
logits=logits,
|
415 |
+
past_key_values=outputs.past_key_values,
|
416 |
+
hidden_states=outputs.hidden_states,
|
417 |
+
attentions=outputs.attentions,
|
418 |
+
)
|
fla/models/gsa/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.gsa.configuration_gsa import GSAConfig
|
6 |
+
from fla.models.gsa.modeling_gsa import GSAForCausalLM, GSAModel
|
7 |
+
|
8 |
+
AutoConfig.register(GSAConfig.model_type, GSAConfig)
|
9 |
+
AutoModel.register(GSAConfig, GSAModel)
|
10 |
+
AutoModelForCausalLM.register(GSAConfig, GSAForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['GSAConfig', 'GSAForCausalLM', 'GSAModel']
|
fla/models/gsa/configuration_gsa.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class GSAConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'gsa'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
hidden_size: int = 2048,
|
16 |
+
gate_logit_normalizer: Optional[int] = 8,
|
17 |
+
clamp_min: Optional[float] = None,
|
18 |
+
clamp_max: Optional[float] = None,
|
19 |
+
hidden_ratio: Optional[int] = 4,
|
20 |
+
intermediate_size: Optional[int] = None,
|
21 |
+
num_hidden_layers: int = 24,
|
22 |
+
num_heads: int = 4,
|
23 |
+
num_kv_heads: Optional[int] = None,
|
24 |
+
num_slots: Optional[int] = 64,
|
25 |
+
use_short_conv: bool = False,
|
26 |
+
conv_size: int = 4,
|
27 |
+
exapnd_k: float = 1,
|
28 |
+
exapnd_v: float = 1,
|
29 |
+
feature_map: str = 'swish',
|
30 |
+
use_output_gate: bool = False,
|
31 |
+
use_norm: bool = True,
|
32 |
+
max_position_embeddings: int = 2048,
|
33 |
+
hidden_act: str = "swish",
|
34 |
+
elementwise_affine: Optional[bool] = True,
|
35 |
+
norm_first: bool = True,
|
36 |
+
norm_eps: float = 1e-6,
|
37 |
+
attn: Optional[Dict] = None,
|
38 |
+
use_cache: bool = True,
|
39 |
+
pad_token_id: int = None,
|
40 |
+
bos_token_id: int = 1,
|
41 |
+
eos_token_id: int = 2,
|
42 |
+
initializer_range: float = 0.02,
|
43 |
+
tie_word_embeddings: bool = False,
|
44 |
+
fuse_norm: bool = True,
|
45 |
+
fuse_cross_entropy: bool = True,
|
46 |
+
vocab_size: int = 32000,
|
47 |
+
**kwargs
|
48 |
+
):
|
49 |
+
self.hidden_size = hidden_size
|
50 |
+
self.gate_logit_normalizer = gate_logit_normalizer
|
51 |
+
self.clamp_min = clamp_min
|
52 |
+
self.clamp_max = clamp_max
|
53 |
+
self.hidden_ratio = hidden_ratio
|
54 |
+
self.intermediate_size = intermediate_size
|
55 |
+
self.num_hidden_layers = num_hidden_layers
|
56 |
+
self.num_heads = num_heads
|
57 |
+
self.num_kv_heads = num_kv_heads
|
58 |
+
self.num_slots = num_slots
|
59 |
+
self.use_short_conv = use_short_conv
|
60 |
+
self.conv_size = conv_size
|
61 |
+
self.expand_k = exapnd_k
|
62 |
+
self.expand_v = exapnd_v
|
63 |
+
self.feature_map = feature_map
|
64 |
+
self.use_output_gate = use_output_gate
|
65 |
+
self.use_norm = use_norm
|
66 |
+
self.max_position_embeddings = max_position_embeddings
|
67 |
+
self.hidden_act = hidden_act
|
68 |
+
self.elementwise_affine = elementwise_affine
|
69 |
+
self.norm_first = norm_first
|
70 |
+
self.norm_eps = norm_eps
|
71 |
+
self.attn = attn
|
72 |
+
self.use_cache = use_cache
|
73 |
+
self.initializer_range = initializer_range
|
74 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
75 |
+
self.fuse_norm = fuse_norm
|
76 |
+
self.vocab_size = vocab_size
|
77 |
+
|
78 |
+
if attn is not None:
|
79 |
+
if not isinstance(attn, Dict):
|
80 |
+
raise ValueError("attn must be a dictionary")
|
81 |
+
if 'layers' not in attn:
|
82 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
83 |
+
if 'num_heads' not in attn:
|
84 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
85 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
86 |
+
attn['window_size'] = attn.get('window_size', None)
|
87 |
+
|
88 |
+
super().__init__(
|
89 |
+
pad_token_id=pad_token_id,
|
90 |
+
bos_token_id=bos_token_id,
|
91 |
+
eos_token_id=eos_token_id,
|
92 |
+
tie_word_embeddings=tie_word_embeddings,
|
93 |
+
**kwargs,
|
94 |
+
)
|
fla/models/gsa/modeling_gsa.py
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.activations import ACT2FN
|
13 |
+
from transformers.generation import GenerationMixin
|
14 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
15 |
+
CausalLMOutputWithPast)
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
from fla.layers.attn import Attention
|
20 |
+
from fla.layers.gsa import GatedSlotAttention
|
21 |
+
from fla.models.gsa.configuration_gsa import GSAConfig
|
22 |
+
from fla.models.utils import Cache
|
23 |
+
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
|
24 |
+
RMSNorm)
|
25 |
+
from fla.modules.activations import swiglu_linear
|
26 |
+
from fla.modules.layernorm import rms_norm_linear
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
class GSAMLP(nn.Module):
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
hidden_size: int,
|
36 |
+
hidden_ratio: Optional[int] = None,
|
37 |
+
intermediate_size: Optional[int] = None,
|
38 |
+
hidden_act: str = 'swish',
|
39 |
+
norm_first: bool = True,
|
40 |
+
norm_eps: float = 1e-5
|
41 |
+
) -> GSAMLP:
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
self.hidden_size = hidden_size
|
45 |
+
# the final number of params is `hidden_ratio * hidden_size^2`
|
46 |
+
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
47 |
+
if hidden_ratio is None:
|
48 |
+
hidden_ratio = 4
|
49 |
+
if intermediate_size is None:
|
50 |
+
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
51 |
+
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
52 |
+
self.hidden_ratio = hidden_ratio
|
53 |
+
self.intermediate_size = intermediate_size
|
54 |
+
self.norm_first = norm_first
|
55 |
+
|
56 |
+
if norm_first:
|
57 |
+
self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps)
|
58 |
+
|
59 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
60 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
61 |
+
self.act_fn = ACT2FN[hidden_act]
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
if self.norm_first:
|
65 |
+
x = rms_norm_linear(x, self.norm.weight, self.norm.bias, self.gate_proj.weight, self.gate_proj.bias)
|
66 |
+
else:
|
67 |
+
x = self.gate_proj(x)
|
68 |
+
gate, y = x.chunk(2, -1)
|
69 |
+
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
70 |
+
|
71 |
+
|
72 |
+
class GSABlock(nn.Module):
|
73 |
+
def __init__(self, config: GSAConfig, layer_idx: int):
|
74 |
+
super().__init__()
|
75 |
+
self.hidden_size = config.hidden_size
|
76 |
+
|
77 |
+
if not config.norm_first:
|
78 |
+
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
79 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
80 |
+
self.attn = Attention(
|
81 |
+
hidden_size=config.hidden_size,
|
82 |
+
num_heads=config.attn['num_heads'],
|
83 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
84 |
+
window_size=config.attn['window_size'],
|
85 |
+
max_position_embeddings=config.max_position_embeddings,
|
86 |
+
layer_idx=layer_idx
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
self.attn = GatedSlotAttention(
|
90 |
+
hidden_size=config.hidden_size,
|
91 |
+
expand_k=config.expand_k,
|
92 |
+
expand_v=config.expand_v,
|
93 |
+
num_heads=config.num_heads,
|
94 |
+
num_kv_heads=config.num_kv_heads,
|
95 |
+
num_slots=config.num_slots,
|
96 |
+
use_short_conv=config.use_short_conv,
|
97 |
+
conv_size=config.conv_size,
|
98 |
+
feature_map=config.feature_map,
|
99 |
+
use_output_gate=config.use_output_gate,
|
100 |
+
use_norm=config.use_norm,
|
101 |
+
gate_fn=config.hidden_act,
|
102 |
+
gate_logit_normalizer=config.gate_logit_normalizer,
|
103 |
+
elementwise_affine=config.elementwise_affine,
|
104 |
+
norm_first=config.norm_first,
|
105 |
+
norm_eps=config.norm_eps,
|
106 |
+
fuse_norm=config.fuse_norm,
|
107 |
+
layer_idx=layer_idx
|
108 |
+
)
|
109 |
+
if not config.norm_first:
|
110 |
+
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
111 |
+
self.mlp = GSAMLP(
|
112 |
+
hidden_size=config.hidden_size,
|
113 |
+
hidden_ratio=config.hidden_ratio,
|
114 |
+
intermediate_size=config.intermediate_size,
|
115 |
+
hidden_act=config.hidden_act,
|
116 |
+
norm_first=config.norm_first,
|
117 |
+
norm_eps=config.norm_eps
|
118 |
+
)
|
119 |
+
|
120 |
+
def forward(
|
121 |
+
self,
|
122 |
+
hidden_states: torch.Tensor,
|
123 |
+
attention_mask: Optional[torch.Tensor] = None,
|
124 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
125 |
+
use_cache: Optional[bool] = False,
|
126 |
+
output_attentions: Optional[bool] = False,
|
127 |
+
**kwargs
|
128 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
129 |
+
|
130 |
+
residual = hidden_states
|
131 |
+
if hasattr(self, 'attn_norm'):
|
132 |
+
hidden_states = self.attn_norm(hidden_states)
|
133 |
+
hidden_states, attentions, past_key_values = self.attn(
|
134 |
+
hidden_states=hidden_states,
|
135 |
+
attention_mask=attention_mask,
|
136 |
+
past_key_values=past_key_values,
|
137 |
+
use_cache=use_cache,
|
138 |
+
output_attentions=output_attentions
|
139 |
+
)
|
140 |
+
if hasattr(self, 'mlp_norm'):
|
141 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
142 |
+
else:
|
143 |
+
hidden_states = residual + hidden_states
|
144 |
+
residual = hidden_states
|
145 |
+
hidden_states = self.mlp(hidden_states)
|
146 |
+
hidden_states = residual + hidden_states
|
147 |
+
|
148 |
+
outputs = (hidden_states, attentions, past_key_values)
|
149 |
+
|
150 |
+
return outputs
|
151 |
+
|
152 |
+
|
153 |
+
class GSAPreTrainedModel(PreTrainedModel):
|
154 |
+
|
155 |
+
config_class = GSAConfig
|
156 |
+
supports_gradient_checkpointing = True
|
157 |
+
_no_split_modules = ['GSABlock']
|
158 |
+
|
159 |
+
def __init__(self, *inputs, **kwargs):
|
160 |
+
super().__init__(*inputs, **kwargs)
|
161 |
+
|
162 |
+
def _init_weights(
|
163 |
+
self,
|
164 |
+
module: nn.Module,
|
165 |
+
rescale_prenorm_residual: bool = True,
|
166 |
+
num_residuals_per_layer: int = 2,
|
167 |
+
):
|
168 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
169 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
170 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
171 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
172 |
+
if module.bias is not None:
|
173 |
+
nn.init.zeros_(module.bias)
|
174 |
+
elif isinstance(module, nn.Embedding):
|
175 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
176 |
+
if module.padding_idx is not None:
|
177 |
+
module.weight.data[module.padding_idx].zero_()
|
178 |
+
|
179 |
+
if rescale_prenorm_residual:
|
180 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
181 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
182 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
183 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
184 |
+
#
|
185 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
186 |
+
for name, p in module.named_parameters():
|
187 |
+
if name in ["o_proj.weight", "down_proj.weight"]:
|
188 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
189 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
190 |
+
# We need to reinit p since this code could be called multiple times
|
191 |
+
# Having just p *= scale would repeatedly scale it down
|
192 |
+
with torch.no_grad():
|
193 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
194 |
+
|
195 |
+
|
196 |
+
class GSAModel(GSAPreTrainedModel):
|
197 |
+
|
198 |
+
def __init__(self, config: GSAConfig):
|
199 |
+
super().__init__(config)
|
200 |
+
self.padding_idx = config.pad_token_id
|
201 |
+
self.vocab_size = config.vocab_size
|
202 |
+
|
203 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
204 |
+
self.layers = nn.ModuleList([GSABlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
205 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
206 |
+
|
207 |
+
self.gradient_checkpointing = False
|
208 |
+
|
209 |
+
self.post_init()
|
210 |
+
|
211 |
+
def get_input_embeddings(self):
|
212 |
+
return self.embeddings
|
213 |
+
|
214 |
+
def set_input_embeddings(self, value):
|
215 |
+
self.embeddings = value
|
216 |
+
|
217 |
+
def forward(
|
218 |
+
self,
|
219 |
+
input_ids: Optional[torch.LongTensor] = None,
|
220 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
221 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
222 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
223 |
+
use_cache: Optional[bool] = None,
|
224 |
+
output_attentions: Optional[bool] = None,
|
225 |
+
output_hidden_states: Optional[bool] = None,
|
226 |
+
return_dict: Optional[bool] = None
|
227 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
228 |
+
if output_attentions:
|
229 |
+
warnings.warn("`GSAModel` does not `output_attentions` now, setting it to `False`.")
|
230 |
+
output_attentions = False
|
231 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
232 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
233 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
234 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
235 |
+
|
236 |
+
# retrieve input_ids and inputs_embeds
|
237 |
+
if input_ids is not None and inputs_embeds is not None:
|
238 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
239 |
+
if input_ids is None and inputs_embeds is None:
|
240 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
241 |
+
|
242 |
+
if inputs_embeds is None:
|
243 |
+
inputs_embeds = self.embeddings(input_ids)
|
244 |
+
hidden_states = inputs_embeds
|
245 |
+
|
246 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
247 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
248 |
+
|
249 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
250 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
251 |
+
use_cache = False
|
252 |
+
|
253 |
+
all_hidden_states = () if output_hidden_states else None
|
254 |
+
all_attns = () if output_attentions else None
|
255 |
+
|
256 |
+
for i, layer in enumerate(self.layers):
|
257 |
+
if output_hidden_states:
|
258 |
+
all_hidden_states += (hidden_states,)
|
259 |
+
|
260 |
+
if self.gradient_checkpointing and self.training:
|
261 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
262 |
+
layer.__call__,
|
263 |
+
hidden_states,
|
264 |
+
attention_mask,
|
265 |
+
past_key_values,
|
266 |
+
use_cache,
|
267 |
+
output_attentions,
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
hidden_states, attentions, past_key_values = layer(
|
271 |
+
hidden_states,
|
272 |
+
attention_mask=attention_mask,
|
273 |
+
past_key_values=past_key_values,
|
274 |
+
use_cache=use_cache,
|
275 |
+
output_attentions=output_attentions
|
276 |
+
)
|
277 |
+
|
278 |
+
if output_attentions:
|
279 |
+
all_attns += (attentions,)
|
280 |
+
|
281 |
+
hidden_states = self.norm(hidden_states)
|
282 |
+
|
283 |
+
# add hidden states from the last decoder layer
|
284 |
+
if output_hidden_states:
|
285 |
+
all_hidden_states += (hidden_states,)
|
286 |
+
|
287 |
+
if not return_dict:
|
288 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
289 |
+
return BaseModelOutputWithPast(
|
290 |
+
last_hidden_state=hidden_states,
|
291 |
+
past_key_values=past_key_values,
|
292 |
+
hidden_states=all_hidden_states,
|
293 |
+
attentions=all_attns
|
294 |
+
)
|
295 |
+
|
296 |
+
|
297 |
+
class GSAForCausalLM(GSAPreTrainedModel, GenerationMixin):
|
298 |
+
|
299 |
+
_tied_weights_keys = ["lm_head.weight"]
|
300 |
+
|
301 |
+
def __init__(self, config):
|
302 |
+
|
303 |
+
super().__init__(config)
|
304 |
+
self.model = GSAModel(config)
|
305 |
+
self.vocab_size = config.vocab_size
|
306 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
307 |
+
|
308 |
+
# Initialize weights and apply final processing
|
309 |
+
self.post_init()
|
310 |
+
|
311 |
+
def get_input_embeddings(self):
|
312 |
+
return self.model.embeddings
|
313 |
+
|
314 |
+
def set_input_embeddings(self, value):
|
315 |
+
self.model.embeddings = value
|
316 |
+
|
317 |
+
def get_output_embeddings(self):
|
318 |
+
return self.lm_head
|
319 |
+
|
320 |
+
def set_output_embeddings(self, new_embeddings):
|
321 |
+
self.lm_head = new_embeddings
|
322 |
+
|
323 |
+
def set_decoder(self, decoder):
|
324 |
+
self.model = decoder
|
325 |
+
|
326 |
+
def get_decoder(self):
|
327 |
+
return self.model
|
328 |
+
|
329 |
+
def generate(self, *args, **kwargs):
|
330 |
+
try:
|
331 |
+
return super().generate(*args, **kwargs)
|
332 |
+
except AttributeError as exception:
|
333 |
+
if 'past_key_values' in str(exception):
|
334 |
+
raise AttributeError(
|
335 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
336 |
+
f"which is not supported for {self.__class__.__name__}. "
|
337 |
+
f"Try another generation strategy instead. "
|
338 |
+
f"For the available generation strategies, check this doc: "
|
339 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
340 |
+
)
|
341 |
+
else:
|
342 |
+
raise exception
|
343 |
+
|
344 |
+
def prepare_inputs_for_generation(
|
345 |
+
self,
|
346 |
+
input_ids: torch.LongTensor = None,
|
347 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
348 |
+
attention_mask: Optional[torch.Tensor] = None,
|
349 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
350 |
+
use_cache: bool = True,
|
351 |
+
num_logits_to_keep: Optional[int] = None,
|
352 |
+
**kwargs
|
353 |
+
):
|
354 |
+
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
355 |
+
if past_key_values is not None:
|
356 |
+
input_ids = input_ids[:, -1:]
|
357 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
358 |
+
if inputs_embeds is not None and past_key_values is None:
|
359 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
360 |
+
else:
|
361 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
362 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
363 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
364 |
+
# TODO: use `next_tokens` directly instead.
|
365 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
366 |
+
|
367 |
+
if num_logits_to_keep is not None:
|
368 |
+
model_inputs['num_logits_to_keep'] = num_logits_to_keep
|
369 |
+
|
370 |
+
model_inputs.update({
|
371 |
+
'past_key_values': past_key_values,
|
372 |
+
'use_cache': use_cache,
|
373 |
+
'attention_mask': attention_mask,
|
374 |
+
'num_logits_to_keep': num_logits_to_keep,
|
375 |
+
})
|
376 |
+
return model_inputs
|
377 |
+
|
378 |
+
def forward(
|
379 |
+
self,
|
380 |
+
input_ids: torch.LongTensor = None,
|
381 |
+
attention_mask: Optional[torch.Tensor] = None,
|
382 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
383 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
384 |
+
labels: Optional[torch.LongTensor] = None,
|
385 |
+
use_cache: Optional[bool] = None,
|
386 |
+
output_attentions: Optional[bool] = None,
|
387 |
+
output_hidden_states: Optional[bool] = None,
|
388 |
+
return_dict: Optional[bool] = None,
|
389 |
+
num_logits_to_keep: Optional[int] = 0
|
390 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
391 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
392 |
+
output_hidden_states = (
|
393 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
394 |
+
)
|
395 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
396 |
+
|
397 |
+
outputs = self.model(
|
398 |
+
input_ids=input_ids,
|
399 |
+
attention_mask=attention_mask,
|
400 |
+
inputs_embeds=inputs_embeds,
|
401 |
+
past_key_values=past_key_values,
|
402 |
+
use_cache=use_cache,
|
403 |
+
output_attentions=output_attentions,
|
404 |
+
output_hidden_states=output_hidden_states,
|
405 |
+
return_dict=return_dict
|
406 |
+
)
|
407 |
+
|
408 |
+
hidden_states = outputs[0]
|
409 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
410 |
+
logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -num_logits_to_keep:])
|
411 |
+
|
412 |
+
loss = None
|
413 |
+
if labels is not None:
|
414 |
+
if self.config.fuse_cross_entropy:
|
415 |
+
if fuse_linear_and_cross_entropy:
|
416 |
+
loss_fct = FusedLinearCrossEntropyLoss()
|
417 |
+
else:
|
418 |
+
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
419 |
+
else:
|
420 |
+
loss_fct = nn.CrossEntropyLoss()
|
421 |
+
# Enable model parallelism
|
422 |
+
labels = labels.to(hidden_states.device)
|
423 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
424 |
+
if fuse_linear_and_cross_entropy:
|
425 |
+
loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
|
426 |
+
labels.view(-1),
|
427 |
+
self.lm_head.weight,
|
428 |
+
self.lm_head.bias)
|
429 |
+
else:
|
430 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
431 |
+
|
432 |
+
if not return_dict:
|
433 |
+
output = (logits,) + outputs[1:]
|
434 |
+
return (loss,) + output if loss is not None else output
|
435 |
+
|
436 |
+
return CausalLMOutputWithPast(
|
437 |
+
loss=loss,
|
438 |
+
logits=logits,
|
439 |
+
past_key_values=outputs.past_key_values,
|
440 |
+
hidden_states=outputs.hidden_states,
|
441 |
+
attentions=outputs.attentions,
|
442 |
+
)
|
fla/models/hgrn/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.hgrn.configuration_hgrn import HGRNConfig
|
6 |
+
from fla.models.hgrn.modeling_hgrn import HGRNForCausalLM, HGRNModel
|
7 |
+
|
8 |
+
AutoConfig.register(HGRNConfig.model_type, HGRNConfig)
|
9 |
+
AutoModel.register(HGRNConfig, HGRNModel)
|
10 |
+
AutoModelForCausalLM.register(HGRNConfig, HGRNForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['HGRNConfig', 'HGRNForCausalLM', 'HGRNModel']
|
fla/models/hgrn/configuration_hgrn.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from typing import Dict, Optional
|
4 |
+
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
|
7 |
+
|
8 |
+
class HGRNConfig(PretrainedConfig):
|
9 |
+
|
10 |
+
model_type = 'hgrn'
|
11 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
attn_mode: str = "chunk",
|
16 |
+
hidden_size: int = 2048,
|
17 |
+
num_hidden_layers: int = 24,
|
18 |
+
expand_ratio: Optional[int] = 1,
|
19 |
+
use_short_conv: bool = False,
|
20 |
+
conv_size: int = 4,
|
21 |
+
use_lower_bound: bool = True,
|
22 |
+
max_position_embeddings: int = 2048,
|
23 |
+
hidden_ratio: Optional[int] = 4,
|
24 |
+
intermediate_size: Optional[int] = None,
|
25 |
+
hidden_act: str = "swish",
|
26 |
+
elementwise_affine: Optional[bool] = True,
|
27 |
+
norm_eps: float = 1e-6,
|
28 |
+
attn: Optional[Dict] = None,
|
29 |
+
use_cache: bool = True,
|
30 |
+
pad_token_id: int = None,
|
31 |
+
bos_token_id: int = 1,
|
32 |
+
eos_token_id: int = 2,
|
33 |
+
tie_word_embeddings: bool = False,
|
34 |
+
initializer_range: float = 0.02,
|
35 |
+
fuse_cross_entropy: bool = True,
|
36 |
+
vocab_size: int = 32000,
|
37 |
+
**kwargs
|
38 |
+
):
|
39 |
+
self.attn_mode = attn_mode
|
40 |
+
self.hidden_size = hidden_size
|
41 |
+
self.num_hidden_layers = num_hidden_layers
|
42 |
+
self.expand_ratio = expand_ratio
|
43 |
+
self.use_short_conv = use_short_conv
|
44 |
+
self.conv_size = conv_size
|
45 |
+
self.use_lower_bound = use_lower_bound
|
46 |
+
self.max_position_embeddings = max_position_embeddings
|
47 |
+
self.hidden_ratio = hidden_ratio
|
48 |
+
self.intermediate_size = intermediate_size
|
49 |
+
self.elementwise_affine = elementwise_affine
|
50 |
+
self.attn = attn
|
51 |
+
self.norm_eps = norm_eps
|
52 |
+
self.hidden_act = hidden_act
|
53 |
+
self.use_cache = use_cache
|
54 |
+
self.initializer_range = initializer_range
|
55 |
+
self.fuse_cross_entropy = fuse_cross_entropy
|
56 |
+
self.vocab_size = vocab_size
|
57 |
+
|
58 |
+
if attn is not None:
|
59 |
+
if not isinstance(attn, Dict):
|
60 |
+
raise ValueError("attn must be a dictionary")
|
61 |
+
if 'layers' not in attn:
|
62 |
+
raise ValueError("Layer indices must be provided to initialize hybrid attention layers")
|
63 |
+
if 'num_heads' not in attn:
|
64 |
+
raise ValueError("Number of heads must be provided to initialize hybrid attention layers")
|
65 |
+
attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads'])
|
66 |
+
attn['window_size'] = attn.get('window_size', None)
|
67 |
+
|
68 |
+
super().__init__(
|
69 |
+
pad_token_id=pad_token_id,
|
70 |
+
bos_token_id=bos_token_id,
|
71 |
+
eos_token_id=eos_token_id,
|
72 |
+
tie_word_embeddings=tie_word_embeddings,
|
73 |
+
**kwargs,
|
74 |
+
)
|
fla/models/hgrn/modeling_hgrn.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from transformers.activations import ACT2FN
|
13 |
+
from transformers.generation import GenerationMixin
|
14 |
+
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
15 |
+
CausalLMOutputWithPast)
|
16 |
+
from transformers.modeling_utils import PreTrainedModel
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
from fla.layers.attn import Attention
|
20 |
+
from fla.layers.hgrn import HGRNAttention
|
21 |
+
from fla.models.hgrn.configuration_hgrn import HGRNConfig
|
22 |
+
from fla.models.utils import Cache
|
23 |
+
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
|
24 |
+
RMSNorm)
|
25 |
+
from fla.modules.activations import swiglu_linear
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class HGRNMLP(nn.Module):
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
hidden_size: int,
|
35 |
+
hidden_ratio: Optional[int] = None,
|
36 |
+
intermediate_size: Optional[int] = None,
|
37 |
+
hidden_act: str = 'swish'
|
38 |
+
) -> HGRNMLP:
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.hidden_size = hidden_size
|
42 |
+
# the final number of params is `hidden_ratio * hidden_size^2`
|
43 |
+
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
44 |
+
if hidden_ratio is None:
|
45 |
+
hidden_ratio = 4
|
46 |
+
if intermediate_size is None:
|
47 |
+
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
48 |
+
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
49 |
+
self.hidden_ratio = hidden_ratio
|
50 |
+
self.intermediate_size = intermediate_size
|
51 |
+
|
52 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
53 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
54 |
+
self.act_fn = ACT2FN[hidden_act]
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
y = self.gate_proj(x)
|
58 |
+
gate, y = y.chunk(2, -1)
|
59 |
+
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
60 |
+
|
61 |
+
|
62 |
+
class HGRNBlock(nn.Module):
|
63 |
+
def __init__(self, config: HGRNConfig, layer_idx: int):
|
64 |
+
super().__init__()
|
65 |
+
self.hidden_size = config.hidden_size
|
66 |
+
|
67 |
+
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
68 |
+
if config.attn is not None and layer_idx in config.attn['layers']:
|
69 |
+
self.attn = Attention(
|
70 |
+
hidden_size=config.hidden_size,
|
71 |
+
num_heads=config.attn['num_heads'],
|
72 |
+
num_kv_heads=config.attn['num_kv_heads'],
|
73 |
+
window_size=config.attn['window_size'],
|
74 |
+
max_position_embeddings=config.max_position_embeddings,
|
75 |
+
layer_idx=layer_idx
|
76 |
+
)
|
77 |
+
else:
|
78 |
+
self.attn = HGRNAttention(
|
79 |
+
mode=config.attn_mode,
|
80 |
+
hidden_size=config.hidden_size,
|
81 |
+
expand_ratio=config.expand_ratio,
|
82 |
+
use_short_conv=config.use_short_conv,
|
83 |
+
conv_size=config.conv_size,
|
84 |
+
elementwise_affine=config.elementwise_affine,
|
85 |
+
norm_eps=config.norm_eps,
|
86 |
+
layer_idx=layer_idx
|
87 |
+
)
|
88 |
+
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
89 |
+
self.mlp = HGRNMLP(
|
90 |
+
hidden_size=config.hidden_size,
|
91 |
+
hidden_ratio=config.hidden_ratio,
|
92 |
+
intermediate_size=config.intermediate_size,
|
93 |
+
hidden_act=config.hidden_act
|
94 |
+
)
|
95 |
+
|
96 |
+
def forward(
|
97 |
+
self,
|
98 |
+
hidden_states: torch.Tensor,
|
99 |
+
attention_mask: Optional[torch.Tensor] = None,
|
100 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
101 |
+
use_cache: Optional[bool] = False,
|
102 |
+
output_attentions: Optional[bool] = False,
|
103 |
+
lower_bound: Optional[torch.Tensor] = False,
|
104 |
+
**kwargs,
|
105 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
106 |
+
residual = hidden_states
|
107 |
+
hidden_states = self.attn_norm(hidden_states)
|
108 |
+
hidden_states, attentions, past_key_values = self.attn(
|
109 |
+
hidden_states=hidden_states,
|
110 |
+
attention_mask=attention_mask,
|
111 |
+
past_key_values=past_key_values,
|
112 |
+
use_cache=use_cache,
|
113 |
+
output_attentions=output_attentions,
|
114 |
+
lower_bound=lower_bound
|
115 |
+
)
|
116 |
+
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
117 |
+
hidden_states = self.mlp(hidden_states)
|
118 |
+
hidden_states = residual + hidden_states
|
119 |
+
|
120 |
+
outputs = (hidden_states, attentions, past_key_values)
|
121 |
+
|
122 |
+
return outputs
|
123 |
+
|
124 |
+
|
125 |
+
class HGRNPreTrainedModel(PreTrainedModel):
|
126 |
+
|
127 |
+
config_class = HGRNConfig
|
128 |
+
supports_gradient_checkpointing = True
|
129 |
+
_no_split_modules = ['HGRNBlock']
|
130 |
+
|
131 |
+
def __init__(self, *inputs, **kwargs):
|
132 |
+
super().__init__(*inputs, **kwargs)
|
133 |
+
|
134 |
+
def _init_weights(
|
135 |
+
self,
|
136 |
+
module: nn.Module,
|
137 |
+
rescale_prenorm_residual: bool = True,
|
138 |
+
num_residuals_per_layer: int = 2,
|
139 |
+
):
|
140 |
+
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
141 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
142 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
143 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
144 |
+
if module.bias is not None:
|
145 |
+
nn.init.zeros_(module.bias)
|
146 |
+
elif isinstance(module, nn.Embedding):
|
147 |
+
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
148 |
+
if module.padding_idx is not None:
|
149 |
+
module.weight.data[module.padding_idx].zero_()
|
150 |
+
|
151 |
+
if rescale_prenorm_residual:
|
152 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
153 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
154 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
155 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
156 |
+
#
|
157 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
158 |
+
for name, p in module.named_parameters():
|
159 |
+
if name in ["o_proj.weight", "down_proj.weight"]:
|
160 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
161 |
+
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
162 |
+
# We need to reinit p since this code could be called multiple times
|
163 |
+
# Having just p *= scale would repeatedly scale it down
|
164 |
+
with torch.no_grad():
|
165 |
+
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
166 |
+
|
167 |
+
|
168 |
+
class HGRNModel(HGRNPreTrainedModel):
|
169 |
+
|
170 |
+
def __init__(self, config: HGRNConfig):
|
171 |
+
super().__init__(config)
|
172 |
+
self.padding_idx = config.pad_token_id
|
173 |
+
self.vocab_size = config.vocab_size
|
174 |
+
|
175 |
+
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
176 |
+
if config.use_lower_bound:
|
177 |
+
self.lower_bounds = nn.Parameter(torch.zeros(config.num_hidden_layers, config.hidden_size))
|
178 |
+
self.layers = nn.ModuleList([HGRNBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
179 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
180 |
+
|
181 |
+
self.gradient_checkpointing = False
|
182 |
+
|
183 |
+
self.post_init()
|
184 |
+
|
185 |
+
def get_input_embeddings(self):
|
186 |
+
return self.embeddings
|
187 |
+
|
188 |
+
def set_input_embeddings(self, value):
|
189 |
+
self.embeddings = value
|
190 |
+
|
191 |
+
def forward(
|
192 |
+
self,
|
193 |
+
input_ids: Optional[torch.LongTensor] = None,
|
194 |
+
attention_mask: Optional[torch.Tensor] = None, # noqa
|
195 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
196 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
197 |
+
use_cache: Optional[bool] = None,
|
198 |
+
output_attentions: Optional[bool] = None,
|
199 |
+
output_hidden_states: Optional[bool] = None,
|
200 |
+
return_dict: Optional[bool] = None
|
201 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
202 |
+
if output_attentions:
|
203 |
+
warnings.warn("`HGRNModel` does not `output_attentions` now, setting it to `False`.")
|
204 |
+
output_attentions = False
|
205 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
206 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
207 |
+
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
208 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
209 |
+
|
210 |
+
# retrieve input_ids and inputs_embeds
|
211 |
+
if input_ids is not None and inputs_embeds is not None:
|
212 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
213 |
+
if input_ids is None and inputs_embeds is None:
|
214 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
215 |
+
|
216 |
+
if inputs_embeds is None:
|
217 |
+
inputs_embeds = self.embeddings(input_ids)
|
218 |
+
hidden_states = inputs_embeds
|
219 |
+
|
220 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
221 |
+
past_key_values = Cache.from_legacy_cache(past_key_values)
|
222 |
+
|
223 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
224 |
+
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
|
225 |
+
use_cache = False
|
226 |
+
|
227 |
+
all_hidden_states = () if output_hidden_states else None
|
228 |
+
all_attns = () if output_attentions else None
|
229 |
+
|
230 |
+
if self.config.use_lower_bound:
|
231 |
+
lower_bounds = self.lower_bounds.softmax(0)
|
232 |
+
lower_bounds = lower_bounds.cumsum(0) - lower_bounds[0]
|
233 |
+
for i, layer in enumerate(self.layers):
|
234 |
+
if output_hidden_states:
|
235 |
+
all_hidden_states += (hidden_states,)
|
236 |
+
|
237 |
+
lower_bound = lower_bounds[i] if self.config.use_lower_bound else None
|
238 |
+
if self.gradient_checkpointing and self.training:
|
239 |
+
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
240 |
+
layer.__call__,
|
241 |
+
hidden_states,
|
242 |
+
attention_mask,
|
243 |
+
past_key_values,
|
244 |
+
use_cache,
|
245 |
+
output_attentions,
|
246 |
+
lower_bound
|
247 |
+
)
|
248 |
+
else:
|
249 |
+
hidden_states, attentions, past_key_values = layer(
|
250 |
+
hidden_states,
|
251 |
+
attention_mask=attention_mask,
|
252 |
+
past_key_values=past_key_values,
|
253 |
+
use_cache=use_cache,
|
254 |
+
output_attentions=output_attentions,
|
255 |
+
lower_bound=lower_bound
|
256 |
+
)
|
257 |
+
|
258 |
+
if output_attentions:
|
259 |
+
all_attns += (attentions,)
|
260 |
+
|
261 |
+
hidden_states = self.norm(hidden_states)
|
262 |
+
|
263 |
+
# add hidden states from the last decoder layer
|
264 |
+
if output_hidden_states:
|
265 |
+
all_hidden_states += (hidden_states,)
|
266 |
+
|
267 |
+
if not return_dict:
|
268 |
+
return tuple(i for i in [hidden_states, past_key_values, all_hidden_states, all_attns] if i is not None)
|
269 |
+
return BaseModelOutputWithPast(
|
270 |
+
last_hidden_state=hidden_states,
|
271 |
+
past_key_values=past_key_values,
|
272 |
+
hidden_states=all_hidden_states,
|
273 |
+
attentions=all_attns
|
274 |
+
)
|
275 |
+
|
276 |
+
|
277 |
+
class HGRNForCausalLM(HGRNPreTrainedModel, GenerationMixin):
|
278 |
+
|
279 |
+
_tied_weights_keys = ["lm_head.weight"]
|
280 |
+
|
281 |
+
def __init__(self, config):
|
282 |
+
super().__init__(config)
|
283 |
+
self.model = HGRNModel(config)
|
284 |
+
self.vocab_size = config.vocab_size
|
285 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
286 |
+
|
287 |
+
# Initialize weights and apply final processing
|
288 |
+
self.post_init()
|
289 |
+
|
290 |
+
def get_input_embeddings(self):
|
291 |
+
return self.model.embeddings
|
292 |
+
|
293 |
+
def set_input_embeddings(self, value):
|
294 |
+
self.model.embeddings = value
|
295 |
+
|
296 |
+
def get_output_embeddings(self):
|
297 |
+
return self.lm_head
|
298 |
+
|
299 |
+
def set_output_embeddings(self, new_embeddings):
|
300 |
+
self.lm_head = new_embeddings
|
301 |
+
|
302 |
+
def set_decoder(self, decoder):
|
303 |
+
self.model = decoder
|
304 |
+
|
305 |
+
def get_decoder(self):
|
306 |
+
return self.model
|
307 |
+
|
308 |
+
def generate(self, *args, **kwargs):
|
309 |
+
try:
|
310 |
+
return super().generate(*args, **kwargs)
|
311 |
+
except AttributeError as exception:
|
312 |
+
if 'past_key_values' in str(exception):
|
313 |
+
raise AttributeError(
|
314 |
+
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
315 |
+
f"which is not supported for {self.__class__.__name__}. "
|
316 |
+
f"Try another generation strategy instead. "
|
317 |
+
f"For the available generation strategies, check this doc: "
|
318 |
+
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
319 |
+
)
|
320 |
+
else:
|
321 |
+
raise exception
|
322 |
+
|
323 |
+
def prepare_inputs_for_generation(
|
324 |
+
self,
|
325 |
+
input_ids: torch.LongTensor = None,
|
326 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
327 |
+
attention_mask: Optional[torch.Tensor] = None,
|
328 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
329 |
+
use_cache: bool = True,
|
330 |
+
num_logits_to_keep: Optional[int] = None,
|
331 |
+
**kwargs
|
332 |
+
):
|
333 |
+
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
334 |
+
if past_key_values is not None:
|
335 |
+
input_ids = input_ids[:, -1:]
|
336 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
337 |
+
if inputs_embeds is not None and past_key_values is None:
|
338 |
+
model_inputs = {'inputs_embeds': inputs_embeds}
|
339 |
+
else:
|
340 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
341 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
342 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
343 |
+
# TODO: use `next_tokens` directly instead.
|
344 |
+
model_inputs = {'input_ids': input_ids.contiguous()}
|
345 |
+
|
346 |
+
if num_logits_to_keep is not None:
|
347 |
+
model_inputs['num_logits_to_keep'] = num_logits_to_keep
|
348 |
+
|
349 |
+
model_inputs.update({
|
350 |
+
'past_key_values': past_key_values,
|
351 |
+
'use_cache': use_cache,
|
352 |
+
'attention_mask': attention_mask,
|
353 |
+
'num_logits_to_keep': num_logits_to_keep,
|
354 |
+
})
|
355 |
+
return model_inputs
|
356 |
+
|
357 |
+
def forward(
|
358 |
+
self,
|
359 |
+
input_ids: torch.LongTensor = None,
|
360 |
+
attention_mask: Optional[torch.Tensor] = None,
|
361 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
362 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
363 |
+
labels: Optional[torch.LongTensor] = None,
|
364 |
+
use_cache: Optional[bool] = None,
|
365 |
+
output_attentions: Optional[bool] = None,
|
366 |
+
output_hidden_states: Optional[bool] = None,
|
367 |
+
return_dict: Optional[bool] = None,
|
368 |
+
num_logits_to_keep: Optional[int] = 0
|
369 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
370 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
371 |
+
output_hidden_states = (
|
372 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
373 |
+
)
|
374 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
375 |
+
|
376 |
+
outputs = self.model(
|
377 |
+
input_ids=input_ids,
|
378 |
+
attention_mask=attention_mask,
|
379 |
+
inputs_embeds=inputs_embeds,
|
380 |
+
past_key_values=past_key_values,
|
381 |
+
use_cache=use_cache,
|
382 |
+
output_attentions=output_attentions,
|
383 |
+
output_hidden_states=output_hidden_states,
|
384 |
+
return_dict=return_dict
|
385 |
+
)
|
386 |
+
|
387 |
+
hidden_states = outputs[0]
|
388 |
+
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
|
389 |
+
logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -num_logits_to_keep:])
|
390 |
+
|
391 |
+
loss = None
|
392 |
+
if labels is not None:
|
393 |
+
if self.config.fuse_cross_entropy:
|
394 |
+
if fuse_linear_and_cross_entropy:
|
395 |
+
loss_fct = FusedLinearCrossEntropyLoss()
|
396 |
+
else:
|
397 |
+
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
398 |
+
else:
|
399 |
+
loss_fct = nn.CrossEntropyLoss()
|
400 |
+
# Enable model parallelism
|
401 |
+
labels = labels.to(hidden_states.device)
|
402 |
+
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
403 |
+
if fuse_linear_and_cross_entropy:
|
404 |
+
loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
|
405 |
+
labels.view(-1),
|
406 |
+
self.lm_head.weight,
|
407 |
+
self.lm_head.bias)
|
408 |
+
else:
|
409 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
410 |
+
|
411 |
+
if not return_dict:
|
412 |
+
output = (logits,) + outputs[1:]
|
413 |
+
return (loss,) + output if loss is not None else output
|
414 |
+
|
415 |
+
return CausalLMOutputWithPast(
|
416 |
+
loss=loss,
|
417 |
+
logits=logits,
|
418 |
+
past_key_values=outputs.past_key_values,
|
419 |
+
hidden_states=outputs.hidden_states,
|
420 |
+
attentions=outputs.attentions,
|
421 |
+
)
|
fla/models/hgrn2/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
4 |
+
|
5 |
+
from fla.models.hgrn2.configuration_hgrn2 import HGRN2Config
|
6 |
+
from fla.models.hgrn2.modeling_hgrn2 import HGRN2ForCausalLM, HGRN2Model
|
7 |
+
|
8 |
+
AutoConfig.register(HGRN2Config.model_type, HGRN2Config)
|
9 |
+
AutoModel.register(HGRN2Config, HGRN2Model)
|
10 |
+
AutoModelForCausalLM.register(HGRN2Config, HGRN2ForCausalLM)
|
11 |
+
|
12 |
+
|
13 |
+
__all__ = ['HGRN2Config', 'HGRN2ForCausalLM', 'HGRN2Model']
|