|
|
|
|
|
from __future__ import annotations |
|
|
|
import math |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from fla.modules.activations import fast_gelu_impl, sigmoid, sqrelu, swish |
|
from fla.modules.layernorm import layer_norm |
|
from fla.utils import checkpoint |
|
|
|
|
|
@checkpoint |
|
def flatten_diag_outer_product(x, y): |
|
z = torch.einsum("...i,...j->...ij", x, y) |
|
N = z.size(-1) |
|
indicies = torch.triu_indices(N, N) |
|
return z[..., indicies[0], indicies[1]] |
|
|
|
|
|
@checkpoint |
|
def flatten_diag_outer_product_off1(x, y): |
|
z = torch.einsum("...i,...j->...ij", x, y) |
|
N = z.size(-1) |
|
indicies = torch.triu_indices(N, N, 1) |
|
indices2 = torch.arange(0, N) |
|
return z[..., indicies[0], indicies[1]], z[..., indices2, indices2] |
|
|
|
|
|
def is_power_of_2(n): |
|
return (n & (n - 1) == 0) and n != 0 |
|
|
|
|
|
class HedgehogFeatureMap(nn.Module): |
|
|
|
r""" |
|
Hedgehog feature map as introduced in |
|
`The Hedgehog & the Porcupine: Expressive Linear Attentions with Softmax Mimicry <https://arxiv.org/abs/2402.04347>`_ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
head_dim: int |
|
) -> HedgehogFeatureMap: |
|
super().__init__() |
|
|
|
self.layer = nn.Linear(head_dim, head_dim) |
|
self.init_weights_() |
|
|
|
def init_weights_(self): |
|
"""Initialize trainable map as identity""" |
|
with torch.no_grad(): |
|
identity = torch.eye(*self.layer.weight.shape[-2:], dtype=torch.float) |
|
self.layer.weight.copy_(identity.to(self.layer.weight)) |
|
nn.init.zeros_(self.layer.bias) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = self.layer(x) |
|
return torch.cat([2*x, -2*x], dim=-1).softmax(-1) |
|
|
|
|
|
class T2RFeatureMap(nn.Module): |
|
|
|
r""" |
|
Simple linear mapping feature map as in |
|
`Finetuning Pretrained Transformers into RNNs <https://arxiv.org/abs/2103.13076>`_ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
head_dim: int, |
|
dot_dim: int = None, |
|
bias: Optional[bool] = False |
|
) -> T2RFeatureMap: |
|
super().__init__() |
|
|
|
if dot_dim is None: |
|
dot_dim = head_dim |
|
|
|
self.head_dim = head_dim |
|
self.dot_dim = dot_dim |
|
self.bias = bias |
|
|
|
self.layer = nn.Linear(head_dim, dot_dim, bias=bias) |
|
|
|
def __repr__(self) -> str: |
|
return f"{self.__class__.__name__}(head_dim={self.head_dim}, dot_dim={self.dot_dim}, bias={self.bias})" |
|
|
|
def forward(self, x: torch.Tensor): |
|
return self.layer(x).relu() |
|
|
|
|
|
class DPFPFeatureMap(nn.Module): |
|
|
|
r""" |
|
Deterministic Parameter-Free Projection (DPFP) feature map in |
|
`Linear Transformers Are Secretly Fast Weight Programmers <https://arxiv.org/abs/2102.11174>`_ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
head_dim: int, |
|
nu: int = 4 |
|
) -> DPFPFeatureMap: |
|
super().__init__() |
|
self.nu = nu |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = torch.cat([x.relu(), -x.relu()], dim=-1) |
|
x_rolled = torch.cat([x.roll(shifts=j, dims=-1) for j in range(1, self.nu+1)], dim=-1) |
|
x_repeat = torch.cat([x] * self.nu, dim=-1) |
|
return x_repeat * x_rolled |
|
|
|
|
|
class HadamardFeatureMap(nn.Module): |
|
def __init__( |
|
self, |
|
head_dim: int |
|
) -> HadamardFeatureMap: |
|
super().__init__() |
|
|
|
self.layer1 = nn.Linear(head_dim, head_dim) |
|
self.layer2 = nn.Linear(head_dim, head_dim) |
|
|
|
def forward(self, x: torch.Tensor): |
|
return self.layer1(x) * self.layer2(x) |
|
|
|
|
|
class LearnableOuterProductFeatureMap(nn.Module): |
|
def __init__( |
|
self, |
|
head_dim: int, |
|
feature_dim: int |
|
) -> LearnableOuterProductFeatureMap: |
|
super().__init__() |
|
|
|
self.layer1 = nn.Linear(head_dim, feature_dim, bias=False) |
|
self.layer2 = nn.Linear(head_dim, feature_dim, bias=False) |
|
self.normalizer = feature_dim ** -0.5 |
|
|
|
def forward(self, x: torch.Tensor): |
|
return flatten_diag_outer_product(self.layer1(x), self.layer2(x)) |
|
|
|
|
|
class LearnablePolySketchNonNegativeFeatureMap(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
head_dim: int, |
|
sketch_size: Optional[int] = None, |
|
degree: Optional[int] = 2 |
|
) -> LearnablePolySketchNonNegativeFeatureMap: |
|
super().__init__() |
|
|
|
assert is_power_of_2(degree) and degree >= 2, f"The degree {degree} must be a power of 2" |
|
|
|
self.head_dim = head_dim |
|
self.sketch_size = sketch_size if sketch_size is not None else head_dim |
|
self.degree = degree |
|
|
|
self.gamma = nn.Parameter(torch.ones(head_dim)) |
|
self.beta = nn.Parameter(torch.zeros(head_dim)) |
|
|
|
|
|
self.sketches1 = nn.ModuleList([ |
|
nn.Linear(head_dim, sketch_size, bias=False), |
|
*[nn.Linear(sketch_size, sketch_size, bias=False) for _ in range(int(math.log2(self.degree)) - 2)] |
|
]) |
|
self.sketches2 = nn.ModuleList([ |
|
nn.Linear(head_dim, sketch_size, bias=False), |
|
*[nn.Linear(sketch_size, sketch_size, bias=False) for _ in range(int(math.log2(self.degree)) - 2)] |
|
]) |
|
|
|
def forward(self, x: torch.Tensor): |
|
|
|
x = layer_norm(x, self.gamma, self.beta) |
|
|
|
x = self.sketches1[0](x) * self.sketches2[0](x) * self.head_dim ** -0.5 |
|
for i in range(1, int(math.log2(self.degree)) - 1): |
|
x = self.sketches1[i](x) * self.sketches2[i](x) * self.head_dim ** -0.5 |
|
|
|
|
|
return flatten_diag_outer_product(x, x) |
|
|
|
|
|
class TaylorFeatureMap(nn.Module): |
|
def __init__( |
|
self, |
|
head_dim: int |
|
) -> TaylorFeatureMap: |
|
super().__init__() |
|
self.head_dim = head_dim |
|
self.r2 = math.sqrt(2) |
|
self.rd = math.sqrt(self.head_dim) |
|
self.rrd = math.sqrt(self.rd) |
|
|
|
def forward(self, x: torch.Tensor): |
|
x2_1, x2_2 = flatten_diag_outer_product_off1(x, x) |
|
return torch.cat([torch.ones_like(x[..., 0:1]), x / self.rrd, x2_2 / (self.rd * self.r2), x2_1 / self.rd], dim=-1) |
|
|
|
|
|
class RebasedFeatureMap(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
head_dim: int, |
|
use_gamma: Optional[bool] = True, |
|
use_beta: Optional[bool] = True, |
|
normalize: Optional[bool] = True |
|
) -> RebasedFeatureMap: |
|
super().__init__() |
|
|
|
self.head_dim = head_dim |
|
self.use_gamma = use_gamma |
|
self.use_beta = use_beta |
|
self.normalize = normalize |
|
|
|
self.gamma = None |
|
self.beta = None |
|
if use_gamma: |
|
self.gamma = nn.Parameter(torch.ones(head_dim)) |
|
if use_beta: |
|
self.beta = nn.Parameter(torch.zeros(head_dim)) |
|
|
|
def forward(self, x: torch.Tensor, flatten: Optional[bool] = True): |
|
if self.use_beta and self.use_gamma and self.normalize: |
|
x = layer_norm(x, self.gamma, self.beta) |
|
elif self.normalize: |
|
x = F.layer_norm(x, (self.head_dim,), self.gamma, self.beta) |
|
elif self.use_gamma and self.use_beta: |
|
x = torch.addcmul(self.beta, x, self.gamma) |
|
elif self.use_gamma: |
|
x = x.mul(self.gamma) |
|
else: |
|
raise RuntimeError(f"Not supported combination of `use_gamma`, `use_beta` and `normalize`, " |
|
f"which is currentlt set as (`{self.use_gamma}`, `{self.use_beta}`, `{self.normalize}`)") |
|
if not flatten: |
|
return x |
|
x2_1, x2_2 = flatten_diag_outer_product_off1(x, x) |
|
|
|
return torch.cat([x2_2 * self.head_dim ** -0.5, x2_1 * (2 / self.head_dim) ** 0.5], dim=-1) |
|
|
|
|
|
class ReLUFeatureMap(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
) -> ReLUFeatureMap: |
|
super().__init__() |
|
|
|
def forward(self, x: torch.Tensor): |
|
return F.relu(x) |
|
|
|
|
|
class SquaredReLUFeatureMap(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
) -> SquaredReLUFeatureMap: |
|
super().__init__() |
|
|
|
def forward(self, x: torch.Tensor): |
|
return sqrelu(x) |
|
|
|
|
|
class GELUFeatureMap(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
) -> GELUFeatureMap: |
|
super().__init__() |
|
|
|
def forward(self, x: torch.Tensor): |
|
return fast_gelu_impl(x) |
|
|
|
|
|
class SwishFeatureMap(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
) -> SwishFeatureMap: |
|
super().__init__() |
|
|
|
def forward(self, x: torch.Tensor): |
|
return swish(x) |
|
|
|
|
|
class SigmoidFeatureMap(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
) -> SigmoidFeatureMap: |
|
super().__init__() |
|
|
|
def forward(self, x: torch.Tensor): |
|
return sigmoid(x) |
|
|