scan-16M-test / fla /ops /common /fused_recurrent.py
zaydzuhri's picture
Training in progress, step 2500
061483f verified
# -*- coding: utf-8 -*-
# Copyright (c) 2024, Songlin Yang, Yu Zhang
from typing import Optional
import torch
import triton
import triton.language as tl
from fla.ops.utils import chunk_global_cumsum
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, contiguous
@triton.autotune(
configs=[
triton.Config({}, num_warps=1),
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
],
key=["BK", "BV", "USE_GK", "USE_GV", "USE_G"],
)
@triton.heuristics({
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.jit
def fused_recurrent_fwd_kernel(
q, # query [B, H, T, K]/[B, T, H, K]
k, # key [B, H, T, K]/[B, T, H, K]
v, # value [B, H, T, V]/[B, T, H, V]
g, # log gate [B, H, T]/[B, T, H] or None
gk, # log gate [B, H, T, K]/[B, T, H, K] or None
gv, # log gate [B, H, T, V]/[B, T, H, V] or None
o, # output [NK, B, H, T, V]/[NK, B, T, H, V]
h0, # initial hidden state [B, H, K, V]
ht, # final hidden state [B, H, K, V]
offsets,
scale,
B: tl.constexpr,
T: tl.constexpr,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
REVERSE: tl.constexpr, # whether to reverse the recurrence
USE_G: tl.constexpr, # whether to use g
USE_GK: tl.constexpr, # whether to use gk
USE_GV: tl.constexpr, # whether to use gv
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
STORE_FINAL_STATE: tl.constexpr, # whether to store final state
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
# indices
i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64)
i_n, i_h = i_nh // H, i_nh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
all = T
T = eos - bos
else:
bos, eos = i_n * T, i_n * T + T
all = B * T
if HEAD_FIRST:
p_q = q + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
p_o = o + (i_k * B*H + i_nh) * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
if USE_G:
p_g = g + i_nh * T + ((T-1) if REVERSE else 0)
if USE_GK:
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
if USE_GV:
p_gv = gv + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
else:
p_q = q + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
p_o = o + ((i_k * all + bos) + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
if USE_G:
p_g = g + (bos + ((T-1) if REVERSE else 0)) * H + i_h
if USE_GK:
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
if USE_GV:
p_gv = gv + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
mask_k = (i_k * BK + tl.arange(0, BK)) < K
mask_v = (i_v * BV + tl.arange(0, BV)) < V
mask_h = mask_k[None, :] & mask_v[:, None]
b_h = tl.zeros([BV, BK], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h0 = h0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
for _ in range(0, T):
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
if USE_GK:
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
b_h = b_h * tl.exp(b_gk[None, :])
if USE_GV:
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
b_h = b_h * tl.exp(b_gv[:, None])
if USE_G:
b_g = tl.load(p_g).to(tl.float32)
b_h = b_h * tl.exp(b_g)
b_h += b_k[None, :] * b_v[:, None]
b_o = b_h * b_q[None, :]
b_o = tl.sum(b_o, axis=1)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v)
p_q += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
p_o += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
if USE_GK:
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
if USE_GV:
p_gv += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
if USE_G:
p_g += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H)
if STORE_FINAL_STATE:
p_ht = ht + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h)
@triton.autotune(
configs=[
triton.Config({}, num_warps=1),
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
],
key=["BK", "BV", "USE_GK", "USE_GV", "USE_G"],
)
@triton.heuristics({
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
# Similar to Algorithm1 of https://arxiv.org/abs/2006.16236
@triton.jit
def fused_recurrent_bwd_kernel(
q, # query [B, H, T, K]/[B, T, H, K]
k, # key [B, H, T, V]/[B, T, H, V]
v, # value [B, H, T, V]/[B, T, H, V]
g, # log gate [B, H, T]/[B, T, H] or None
gk, # log gate [B, H, T, K]/[B, T, H, K] or None
gv, # log gate [B, H, T, V]/[B, T, H, V] or None
h0, # initial hidden state [B, H, K, V]
do, # gradient wrt output [B, H, T, V]/[B, T, H, V]
dq, # gradient wrt query [NV, B, H, T, K]/[NK, B, T, H, K]
dk, # gradient wrt key [NV, B, H, T, K]/[NK, B, T, H, K]
dv, # gradient wrt value [NK, B, H, T, V]/[NV, B, T, H, V]
dht, # gradient wrt final hidden state [B, H, K, V]
dh0, # gradient wrt initial hidden state [B, H, K, V]
offsets,
scale,
B: tl.constexpr,
T: tl.constexpr,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
REVERSE: tl.constexpr, # whether to do autoregressive modeling in the reverse direction
USE_G: tl.constexpr, # whether to use g
USE_GK: tl.constexpr, # whether to use gk
USE_GV: tl.constexpr, # whether to use gv
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
STORE_INITIAL_STATE_GRADIENT: tl.constexpr, # whether to store gradient wrt initial state
USE_FINAL_STATE_GRADIENT: tl.constexpr, # whether to compute gradient wrt final state
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_v, i_k, i_nh = tl.program_id(0).to(tl.int64), tl.program_id(1).to(tl.int64), tl.program_id(2).to(tl.int64)
i_n, i_h = i_nh // H, i_nh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int64), tl.load(offsets + i_n + 1).to(tl.int64)
all = T
T = eos - bos
else:
bos, eos = i_n * T, i_n * T + T
all = B * T
if HEAD_FIRST:
p_k = k + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
p_v = v + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
p_do = do + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
p_dq = dq + (i_v * B*H + i_nh) * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
if USE_G:
p_g = g + i_nh * T + ((T-1) if REVERSE else 0)
if USE_GK:
p_gk = gk + i_nh * T*K + ((T-1) * K if REVERSE else 0) + i_k * BK + tl.arange(0, BK)
if USE_GV:
p_gv = gv + i_nh * T*V + ((T-1) * V if REVERSE else 0) + i_v * BV + tl.arange(0, BV)
else:
p_k = k + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
p_v = v + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
p_do = do + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
p_dq = dq + ((i_v * all + bos) + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
if USE_G:
p_g = g + (bos + ((T-1) if REVERSE else 0)) * H + i_h
if USE_GK:
p_gk = gk + (bos + ((T-1) if REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
if USE_GV:
p_gv = gv + (bos + ((T-1) if REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
mask_k = i_k * BK + tl.arange(0, BK) < K
mask_v = i_v * BV + tl.arange(0, BV) < V
mask_h = mask_k[:, None] & mask_v[None, :]
b_h = tl.zeros([BK, BV], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h0 = h0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32)
for _ in range(0, T):
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32)
if USE_G:
b_g = tl.load(p_g).to(tl.float32)
b_h = b_h * tl.exp(b_g)
if USE_GK:
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
b_h = b_h * tl.exp(b_gk[:, None])
if USE_GV:
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
b_h = b_h * tl.exp(b_gv[None, :])
b_h += b_k[:, None] * b_v[None, :]
b_dq = b_h * b_do[None, :]
b_dq = tl.sum(b_dq, axis=1) * scale
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_k)
p_k += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
p_v += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
p_do += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
p_dq += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
if USE_G:
p_g += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H)
if USE_GK:
p_gk += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * K
if USE_GV:
p_gv += (-1 if REVERSE else 1) * (1 if HEAD_FIRST else H) * V
# sync threads
tl.debug_barrier()
if HEAD_FIRST:
p_q = q + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
p_k = k + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
p_v = v + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
p_do = do + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
p_dk = dk + (i_v * B*H + i_nh) * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
p_dv = dv + (i_k * B*H + i_nh) * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
if USE_G:
p_g = g + i_nh * T + ((T - 1) if not REVERSE else 0)
if USE_GK:
p_gk = gk + i_nh * T*K + ((T - 1) * K if not REVERSE else 0) + i_k * BK + tl.arange(0, BK)
if USE_GV:
p_gv = gv + i_nh * T*V + ((T - 1) * V if not REVERSE else 0) + i_v * BV + tl.arange(0, BV)
else:
p_q = q + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
p_k = k + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
p_v = v + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
p_do = do + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
p_dk = dk + ((i_v * all + bos) + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
p_dv = dv + ((i_k * all + bos) + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
if USE_G:
p_g = g + (bos + ((T - 1) if not REVERSE else 0)) * H + i_h
if USE_GK:
p_gk = gk + (bos + ((T - 1) if not REVERSE else 0)) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
if USE_GV:
p_gv = gv + (bos + ((T - 1) if not REVERSE else 0)) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
if USE_FINAL_STATE_GRADIENT:
p_dht = dht + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
b_dh += tl.load(p_dht, mask=mask_h, other=0).to(tl.float32)
for _ in range(T):
b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) * scale
b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask_v, other=0).to(tl.float32)
b_dh += b_q[:, None] * b_do[None, :]
b_dk = tl.sum(b_dh * b_v[None, :], axis=1)
b_dv = tl.sum(b_dh * b_k[:, None], axis=0)
if USE_G:
b_g = tl.load(p_g).to(tl.float32)
b_dh *= tl.exp(b_g)
if USE_GK:
b_gk = tl.load(p_gk, mask=mask_k, other=0).to(tl.float32)
b_dh *= tl.exp(b_gk)[:, None]
if USE_GV:
b_gv = tl.load(p_gv, mask=mask_v, other=0).to(tl.float32)
b_dh *= tl.exp(b_gv)[None, :]
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_k)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_v)
p_q += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
p_k += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
p_v += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
p_do += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
p_dk += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
p_dv += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
if USE_G:
p_g += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H)
if USE_GK:
p_gk += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * K
if USE_GV:
p_gv += (1 if REVERSE else -1) * (1 if HEAD_FIRST else H) * V
if STORE_INITIAL_STATE_GRADIENT:
p_dh0 = dh0 + i_nh * K*V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask_h)
def fused_recurrent_fwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: Optional[torch.Tensor] = None,
gk: Optional[torch.Tensor] = None,
gv: Optional[torch.Tensor] = None,
scale: Optional[float] = None,
initial_state: Optional[torch.Tensor] = None,
output_final_state: bool = False,
reverse: bool = False,
offsets: Optional[torch.LongTensor] = None,
head_first: bool = True
):
if head_first:
B, H, T, K, V = *k.shape, v.shape[-1]
else:
B, T, H, K, V = *k.shape, v.shape[-1]
N = B if offsets is None else len(offsets) - 1
BK, BV = min(K, 64), min(V, 64)
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
h0 = initial_state
if output_final_state:
ht = q.new_empty(N, H, K, V, dtype=torch.float32)
else:
ht = None
o = q.new_empty(NK, *v.shape, dtype=torch.float32)
grid = (NV, NK, N * H)
fused_recurrent_fwd_kernel[grid](
q,
k,
v,
g,
gk,
gv,
o,
h0,
ht,
offsets,
scale,
B=B,
T=T,
H=H,
K=K,
V=V,
BK=BK,
BV=BV,
USE_G=g is not None,
USE_GK=gk is not None,
USE_GV=gv is not None,
REVERSE=reverse,
HEAD_FIRST=head_first
)
o = o.sum(0)
return o, ht
def fused_recurrent_bwd(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: Optional[torch.Tensor] = None,
gk: Optional[torch.Tensor] = None,
gv: Optional[torch.Tensor] = None,
o: Optional[torch.Tensor] = None,
do: Optional[torch.Tensor] = None,
dht: Optional[torch.Tensor] = None,
scale: Optional[float] = None,
initial_state: Optional[torch.Tensor] = None,
reverse: bool = False,
offsets: Optional[torch.LongTensor] = None,
head_first: bool = True
):
if head_first:
B, H, T, K, V = *k.shape, v.shape[-1]
else:
B, T, H, K, V = *k.shape, v.shape[-1]
N = B if offsets is None else len(offsets) - 1
BK, BV = min(K, 64), min(V, 64)
NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV)
dq = q.new_empty(NV, *q.shape, dtype=torch.float32)
dk = q.new_empty(NV, *k.shape, dtype=torch.float32)
dv = q.new_empty(NK, *v.shape, dtype=torch.float32)
h0 = initial_state
dh0 = torch.empty_like(initial_state) if initial_state is not None else None
grid = (NV, NK, N * H)
fused_recurrent_bwd_kernel[grid](
q,
k,
v,
g,
gk,
gv,
h0,
do,
dq,
dk,
dv,
dht,
dh0,
offsets,
scale,
B=B,
T=T,
H=H,
K=K,
V=V,
BK=BK,
BV=BV,
USE_G=g is not None,
USE_GK=gk is not None,
USE_GV=gv is not None,
REVERSE=reverse,
HEAD_FIRST=head_first
)
dq = dq.sum(0)
dk = dk.sum(0)
dv = dv.sum(0)
dg, dgk, dgv = None, None, None
if g is not None:
dg = chunk_global_cumsum(
(dq * q.float() - dk * k.float()).sum(-1),
reverse=not reverse,
offsets=offsets,
head_first=head_first
)
if gk is not None:
dgk = chunk_global_cumsum(
dq * q.float() - dk * k.float(),
reverse=not reverse,
offsets=offsets,
head_first=head_first
)
if gv is not None:
dgv = chunk_global_cumsum(
do.float() * o.float() - dv * v.float(),
reverse=not reverse,
offsets=offsets,
head_first=head_first
)
return dq, dk, dv, dg, dgk, dgv, dh0
class FusedRecurrentFunction(torch.autograd.Function):
@staticmethod
@contiguous
@autocast_custom_fwd
def forward(
ctx,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: Optional[torch.Tensor] = None,
gk: Optional[torch.Tensor] = None,
gv: Optional[torch.Tensor] = None,
scale: Optional[float] = None,
initial_state: Optional[torch.Tensor] = None,
output_final_state: bool = False,
reverse: bool = False,
offsets: Optional[torch.LongTensor] = None,
head_first: bool = True
):
o, ht = fused_recurrent_fwd(
q=q,
k=k,
v=v,
g=g,
gk=gk,
gv=gv,
scale=scale,
initial_state=initial_state,
output_final_state=output_final_state,
reverse=reverse,
offsets=offsets,
head_first=head_first
)
ctx.save_for_backward(q, k, v, g, gk, gv, initial_state, o)
ctx.scale = scale
ctx.reverse = reverse
ctx.offsets = offsets
ctx.head_first = head_first
return o.to(q.dtype), ht
@staticmethod
@contiguous
@autocast_custom_bwd
def backward(ctx, do, dht):
q, k, v, g, gk, gv, initial_state, o = ctx.saved_tensors
# not supported yet.
if dht is not None:
if g is not None:
assert g.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
if gk is not None:
assert gk.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
if gv is not None:
assert gv.requires_grad is False, "Cannot load final state gradient and use gates at the same time"
dq, dk, dv, dg, dgk, dgv, dh0 = fused_recurrent_bwd(
q=q,
k=k,
v=v,
g=g,
gk=gk,
gv=gv,
o=o,
do=do,
dht=dht,
scale=ctx.scale,
initial_state=initial_state,
reverse=ctx.reverse,
offsets=ctx.offsets,
head_first=ctx.head_first
)
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), dg, dgk, dgv, None, dh0, None, None, None, None
def fused_recurrent(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: Optional[torch.Tensor] = None,
gk: Optional[torch.Tensor] = None,
gv: Optional[torch.Tensor] = None,
scale: Optional[float] = None,
initial_state: Optional[torch.Tensor] = None,
output_final_state: bool = False,
reverse: bool = False,
offsets: Optional[torch.LongTensor] = None,
head_first: bool = True
):
if scale is None:
scale = k.shape[-1] ** -0.5
return FusedRecurrentFunction.apply(
q,
k,
v,
g,
gk,
gv,
scale,
initial_state,
output_final_state,
reverse,
offsets,
head_first
)