zaydzuhri's picture
Training in progress, step 2500
061483f verified
# -*- coding: utf-8 -*-
# Copyright (c) 2024, Songlin Yang, Yu Zhang
from typing import Optional, Tuple
import torch
import triton
import triton.language as tl
@triton.heuristics({
'USE_INITIAL_STATE': lambda args: args['h0'] is not None,
'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps)
for BK in [32, 64, 128]
for BV in [32, 64, 128]
for num_warps in [1, 2, 4, 8]
],
key=['BT', 'USE_G', 'USE_GK', 'USE_GV'],
)
@triton.jit
def chunk_fwd_kernel_h(
k,
v,
h,
g,
gk,
gv,
h0,
ht,
offsets,
c_offsets,
T: tl.constexpr,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_G: tl.constexpr,
USE_GK: tl.constexpr,
USE_GV: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr,
STORE_FINAL_STATE: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_n, i_h = i_nh // H, i_nh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
boh = tl.load(c_offsets + i_n).to(tl.int32)
else:
bos, eos = i_n * T, i_n * T + T
NT = tl.cdiv(T, BT)
boh = i_n * NT
# [BK, BV]
b_h = tl.zeros([BK, BV], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h0 = tl.make_block_ptr(h0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
for i_t in range(NT):
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_v = tl.make_block_ptr(v + i_nh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_v = tl.make_block_ptr(v + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
# [BK, BT]
b_k = tl.load(p_k, boundary_check=(0, 1))
# [BT, BV]
b_v = tl.load(p_v, boundary_check=(0, 1))
last_idx = min((i_t + 1) * BT, T) - 1
# scalar decay
if USE_G:
if HEAD_FIRST:
b_g_last = tl.load(g + i_nh * T + last_idx)
p_g = g + i_nh * T + i_t * BT + tl.arange(0, BT)
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
else:
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
p_g = g + bos*H + (i_t * BT + tl.arange(0, BT)) * H + i_h
b_h *= tl.exp(b_g_last)
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
b_v = (b_v * tl.exp(b_g_last - b_g)[:, None]).to(b_v.dtype)
# vector decay, h = Diag(gk) @ h
if USE_GK:
if HEAD_FIRST:
p_gk = tl.make_block_ptr(gk + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = gk + i_nh * T*K + last_idx * K + i_k * BK + tl.arange(0, BK)
else:
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
b_h *= tl.exp(b_gk_last)[:, None]
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_k = (b_k * tl.exp(b_gk_last[:, None] - b_gk)).to(b_k.dtype)
# vector decay, h = h @ Diag(gv)
if USE_GV:
if HEAD_FIRST:
p_gv = tl.make_block_ptr(gv + i_nh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_gv_last = gv + i_nh * T*V + last_idx * V + i_v * BV + tl.arange(0, BV)
else:
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
b_h *= tl.exp(b_gv_last)[None, :]
b_gv = tl.load(p_gv, boundary_check=(0, 1))
b_v = (b_v * tl.exp(b_gv_last[None, :] - b_gv)).to(b_v.dtype)
b_h += tl.dot(b_k, b_v)
if STORE_FINAL_STATE:
p_ht = tl.make_block_ptr(ht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
@triton.heuristics({
'STORE_INITIAL_STATE_GRADIENT': lambda args: args['dh0'] is not None,
'USE_FINAL_STATE_GRADIENT': lambda args: args['dht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None
})
@triton.autotune(
configs=[
triton.Config({'BK': BK, 'BV': BV}, num_warps=num_warps)
for BK in [32, 64, 128]
for BV in [32, 64, 128]
for num_warps in [1, 2, 4, 8]
],
key=['BT', 'USE_G', 'USE_GK', 'USE_GV'],
)
@triton.jit
def chunk_bwd_kernel_dh(
q,
g,
gk,
gv,
do,
dh,
dht,
dh0,
offsets,
c_offsets,
scale,
T: tl.constexpr,
HQ: tl.constexpr,
H: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BT: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
NG: tl.constexpr,
USE_G: tl.constexpr,
USE_GK: tl.constexpr,
USE_GV: tl.constexpr,
STORE_INITIAL_STATE_GRADIENT: tl.constexpr,
USE_FINAL_STATE_GRADIENT: tl.constexpr,
USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr
):
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_bg = i_nh // NG
i_n, i_hq = i_nh // HQ, i_nh % HQ
i_h = i_hq // NG
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets + i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
boh = tl.load(c_offsets + i_n).to(tl.int32)
else:
bos, eos = i_n * T, i_n * T + T
NT = tl.cdiv(T, BT)
boh = i_n * NT
# [BK, BV]
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
if USE_FINAL_STATE_GRADIENT:
p_dht = tl.make_block_ptr(dht + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_dh += tl.load(p_dht, boundary_check=(0, 1)).to(tl.float32)
for i_t in range(NT - 1, -1, -1):
if HEAD_FIRST:
p_dh = tl.make_block_ptr(dh + (i_nh * NT + i_t) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
else:
p_dh = tl.make_block_ptr(dh + ((boh+i_t) * H + i_h) * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
last_idx = min(i_t * BT + BT, T) - 1
# [BK, BT]
if HEAD_FIRST:
p_q = tl.make_block_ptr(q + i_nh * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_do = tl.make_block_ptr(do + i_nh * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
else:
p_q = tl.make_block_ptr(q + (bos*HQ + i_hq) * K, (K, T), (1, HQ*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_do = tl.make_block_ptr(do + (bos*HQ + i_hq) * V, (T, V), (HQ*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
# [BT, BV]
b_do = tl.load(p_do, boundary_check=(0, 1))
if USE_G:
if HEAD_FIRST:
p_g = g + i_bg * T + i_t * BT + tl.arange(0, BT)
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
b_g_last = tl.load(g + i_bg * T + last_idx)
else:
p_g = g + (bos + i_t * BT + tl.arange(0, BT)) * H + i_h
b_g_last = tl.load(g + (bos + last_idx) * H + i_h)
b_g = tl.load(p_g, mask=(i_t * BT + tl.arange(0, BT) < T), other=0.)
b_q = (b_q * tl.exp(b_g)[None, :]).to(b_q.dtype)
b_dh *= tl.exp(b_g_last)
if USE_GK:
if HEAD_FIRST:
p_gk = tl.make_block_ptr(gk + i_bg * T*K, (K, T), (1, K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = gk + (i_bg * T + last_idx) * K + i_k * BK + tl.arange(0, BK)
else:
p_gk = tl.make_block_ptr(gk + (bos*H + i_h) * K, (K, T), (1, H*K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = gk + (bos + last_idx) * H*K + i_h * K + i_k * BK + tl.arange(0, BK)
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_q = (b_q * tl.exp(b_gk)).to(b_q.dtype)
b_gk_last = tl.load(p_gk_last, mask=(i_k * BK + tl.arange(0, BK) < K), other=0.)
b_dh *= tl.exp(b_gk_last)[:, None]
if USE_GV:
if HEAD_FIRST:
p_gv = tl.make_block_ptr(gv + i_bg * T*V, (T, V), (V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_gv_last = gv + (i_bg * T + last_idx) * V + i_v * BV + tl.arange(0, BV)
else:
p_gv = tl.make_block_ptr(gv + (bos*H + i_h) * V, (T, V), (H*V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_gv_last = gv + (bos + last_idx) * H*V + i_h * V + i_v * BV + tl.arange(0, BV)
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
b_gv = tl.load(p_gv, boundary_check=(0, 1))
b_do = (b_do * tl.exp(b_gv)).to(b_do.dtype)
b_gv_last = tl.load(p_gv_last, mask=(i_v * BV + tl.arange(0, BV) < V), other=0.)
b_dh *= tl.exp(b_gv_last)[None, :]
b_dh += tl.dot(b_q, b_do)
if STORE_INITIAL_STATE_GRADIENT:
p_dh0 = tl.make_block_ptr(dh0 + i_nh * K*V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), boundary_check=(0, 1))
def chunk_fwd_h(
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
gk: torch.Tensor,
gv: torch.Tensor,
h0: torch.Tensor,
output_final_state: bool,
states_in_fp32: bool = False,
offsets: Optional[torch.Tensor] = None,
c_offsets: Optional[torch.Tensor] = None,
head_first: bool = True,
chunk_size: int = 64
) -> Tuple[torch.Tensor, torch.Tensor]:
if head_first:
B, H, T, K, V = *k.shape, v.shape[-1]
else:
B, T, H, K, V = *k.shape, v.shape[-1]
BT = chunk_size
# N: the actual number of sequences in the batch with either equal or variable lengths
if offsets is None:
N, NT, c_offsets = B, triton.cdiv(T, BT), None
else:
N = len(offsets) - 1
if c_offsets is None:
c_offsets = torch.cat([offsets.new_tensor([0]), triton.cdiv(offsets[1:] - offsets[:-1], BT)]).cumsum(-1)
NT = c_offsets[-1]
if head_first:
h = k.new_empty(B, H, NT, K, V, dtype=k.dtype if not states_in_fp32 else torch.float32)
else:
h = k.new_empty(B, NT, H, K, V, dtype=k.dtype if not states_in_fp32 else torch.float32)
ht = k.new_empty(N, H, K, V, dtype=torch.float32) if output_final_state else None
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * H)
chunk_fwd_kernel_h[grid](
k=k,
v=v,
h=h,
g=g,
gk=gk,
gv=gv,
h0=h0,
ht=ht,
offsets=offsets,
c_offsets=c_offsets,
T=T,
H=H,
K=K,
V=V,
BT=BT,
USE_G=g is not None,
USE_GK=gk is not None,
USE_GV=gv is not None,
HEAD_FIRST=head_first
)
return h, ht
def chunk_bwd_dh(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
g: torch.Tensor,
gk: torch.Tensor,
gv: torch.Tensor,
do: torch.Tensor,
h0: torch.Tensor,
dht: torch.Tensor,
scale: float,
states_in_fp32: bool = False,
offsets: Optional[torch.Tensor] = None,
c_offsets: Optional[torch.Tensor] = None,
head_first: bool = True,
chunk_size: int = 64
) -> Tuple[torch.Tensor, torch.Tensor]:
if head_first:
B, H, T, K, V = *k.shape, v.shape[-1]
HQ = q.shape[1]
else:
B, T, H, K, V = *k.shape, v.shape[-1]
HQ = q.shape[2]
BT = chunk_size
# N: the actual number of sequences in the batch with either equal or variable lengths
if offsets is None:
N, NT, c_offsets = B, triton.cdiv(T, BT), None
else:
N = len(offsets) - 1
if c_offsets is None:
c_offsets = torch.cat([offsets.new_tensor([0]), triton.cdiv(offsets[1:] - offsets[:-1], BT)]).cumsum(-1)
NT = c_offsets[-1]
# number of groups in GQA
NG = HQ // H
if head_first:
dh = k.new_empty(B, HQ, NT, K, V, dtype=k.dtype if not states_in_fp32 else torch.float32)
else:
dh = k.new_empty(B, NT, HQ, K, V, dtype=k.dtype if not states_in_fp32 else torch.float32)
dh0 = torch.empty_like(h0, dtype=torch.float32) if h0 is not None else None
def grid(meta): return (triton.cdiv(K, meta['BK']), triton.cdiv(V, meta['BV']), N * H)
chunk_bwd_kernel_dh[grid](
q=q,
g=g,
gk=gk,
gv=gv,
do=do,
dh=dh,
dht=dht,
dh0=dh0,
offsets=offsets,
c_offsets=c_offsets,
scale=scale,
T=T,
HQ=HQ,
H=H,
K=K,
V=V,
BT=BT,
NG=NG,
USE_G=g is not None,
USE_GK=gk is not None,
USE_GV=gv is not None,
HEAD_FIRST=head_first,
)
return dh, dh0