File size: 12,138 Bytes
061483f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
# -*- coding: utf-8 -*-
# Copyright (c) 2023-2024, Tri Dao, Yu Zhang, Songlin Yang.
import torch
import torch.nn.functional as F
import triton
import triton.language as tl
import fla.modules.fused_bitlinear as fused_bitlinear
from fla.utils import autocast_custom_bwd, autocast_custom_fwd, contiguous
sigmoid_fwd_codestring = """
template <typename T> T sigmoid_fwd(T x) {
return 1.0f / (1.0f + ::exp(-float(x)));
}
"""
sigmoid_bwd_codestring = """
template <typename T> T sigmoid_bwd(T x, T g) {
float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x)));
return float(g) * x_sigmoid * (1.0f - x_sigmoid);
}
"""
sigmoid_fwd = torch.cuda.jiterator._create_jit_fn(sigmoid_fwd_codestring)
sigmoid_bwd = torch.cuda.jiterator._create_jit_fn(sigmoid_bwd_codestring)
class SigmoidFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return sigmoid_fwd(x)
@staticmethod
def backward(ctx, dout):
x, = ctx.saved_tensors
return sigmoid_bwd(x, dout)
sigmoid = SigmoidFunction.apply
@triton.autotune(
configs=[
triton.Config({}, num_warps=1),
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
triton.Config({}, num_warps=8),
triton.Config({}, num_warps=16),
triton.Config({}, num_warps=32)
],
key=['D']
)
@triton.jit
def logsigmoid_fwd_kernel(
x,
y,
temperature,
T: tl.constexpr,
D: tl.constexpr,
B: tl.constexpr
):
i = tl.program_id(0)
o_i = i * B + tl.arange(0, B)
m_i = o_i < T
b_x = tl.load(x + o_i, mask=m_i, other=0.).to(tl.float32)
b_m = tl.minimum(0., b_x)
b_z = 1. + tl.exp(-tl.abs(b_x))
b_y = (b_m - tl.log(b_z)) / temperature
tl.store(y + o_i, b_y.to(y.dtype.element_ty), mask=m_i)
@triton.autotune(
configs=[
triton.Config({}, num_warps=1),
triton.Config({}, num_warps=2),
triton.Config({}, num_warps=4),
triton.Config({}, num_warps=8),
triton.Config({}, num_warps=16),
triton.Config({}, num_warps=32)
],
key=['D']
)
@triton.jit
def logsigmoid_bwd_kernel(
x,
dx,
dy,
temperature,
T: tl.constexpr,
D: tl.constexpr,
B: tl.constexpr
):
i = tl.program_id(0)
o_i = i * B + tl.arange(0, B)
m_i = o_i < T
b_x = tl.load(x + o_i, mask=m_i, other=0.).to(tl.float32)
b_dy = tl.load(dy + o_i, mask=m_i, other=0.).to(tl.float32)
b_dx = b_dy * (1. - tl.sigmoid(b_x)) / temperature
tl.store(dx + o_i, b_dx.to(dx.dtype.element_ty), mask=m_i)
def logsigmoid_fwd(x: torch.Tensor, temperature: float = 1.) -> torch.Tensor:
T, D = x.numel(), x.shape[-1]
B = triton.next_power_of_2(triton.cdiv(T, torch.cuda.get_device_properties(x.device).multi_processor_count))
y = torch.empty_like(x)
logsigmoid_fwd_kernel[(triton.cdiv(T, B),)](
x=x,
y=y,
temperature=temperature,
T=T,
D=D,
B=B
)
return y
def logsigmoid_bwd(x: torch.Tensor, dy: torch.Tensor, temperature: float = 1.) -> torch.Tensor:
T, D = x.numel(), x.shape[-1]
B = triton.next_power_of_2(triton.cdiv(T, torch.cuda.get_device_properties(x.device).multi_processor_count))
dx = torch.empty_like(x)
logsigmoid_bwd_kernel[(triton.cdiv(T, B),)](
x=x,
dx=dx,
dy=dy,
temperature=temperature,
T=T,
D=D,
B=B
)
return dx
class LogSigmoidFunction(torch.autograd.Function):
@staticmethod
@contiguous
def forward(ctx, x, temperature):
ctx.save_for_backward(x,)
ctx.temperature = temperature
return logsigmoid_fwd(x, temperature)
@staticmethod
@contiguous
def backward(ctx, dy):
x, = ctx.saved_tensors
return logsigmoid_bwd(x, dy, ctx.temperature), None
def logsigmoid(x: torch.Tensor, temperature: float = 1.) -> torch.Tensor:
return LogSigmoidFunction.apply(x, temperature)
swish_fwd_codestring = """
template <typename T> T swish_fwd(T x) {
float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x)));
return float(x) * x_sigmoid;
}
"""
swish_bwd_codestring = """
template <typename T> T swish_bwd(T x, T g) {
float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x)));
return float(g) * x_sigmoid * (1.0f - float(x) * x_sigmoid + float(x));
}
"""
swish_fwd = torch.cuda.jiterator._create_jit_fn(swish_fwd_codestring)
swish_bwd = torch.cuda.jiterator._create_jit_fn(swish_bwd_codestring)
class SwishFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return swish_fwd(x)
@staticmethod
def backward(ctx, dout):
x, = ctx.saved_tensors
return swish_bwd(x, dout)
swish = SwishFunction.apply
# 1/sqrt(2*pi)-> 0.3989423
# 1/sqrt(2) -> 0.70710678
# sqrt(2/pi) -> 0.79788456
# this function is tanh approximation of gelu
# actual gelu is:
# x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
@torch.jit.script
def bias_gelu(y, bias):
x = bias + y
return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=y.dtype)
# gradient of tanh approximation of gelu
# gradient of actual gelu is:
# 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x)
@torch.jit.script
def bias_gelu_bwd(g, y, bias):
"""Assume that y has shape (B, D) and bias has shape (D)"""
x = bias + y
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (
1 + tanh_out
)
grad_y = ff * g
return grad_y.to(dtype=y.dtype), grad_y.sum(dim=(0), dtype=bias.dtype)
class GeLUFunction(torch.autograd.Function):
@staticmethod
# bias is an optional argument
def forward(ctx, input, bias):
ctx.save_for_backward(input, bias)
return bias_gelu(input, bias)
@staticmethod
def backward(ctx, grad_output):
input, bias = ctx.saved_tensors
tmp = bias_gelu_bwd(grad_output, input, bias)
return tmp, tmp
bias_gelu_impl = GeLUFunction.apply
# this function is tanh approximation of gelu
# actual gelu is:
# x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
@torch.jit.script
def gelu_fwd(x):
return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=x.dtype)
# gradient of tanh approximation of gelu
# gradient of actual gelu is:
# 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x)
@torch.jit.script
def gelu_bwd(g, x):
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (
1 + tanh_out
)
return (ff * g).to(dtype=x.dtype)
class FastGeLUFunction(torch.autograd.Function):
@staticmethod
# bias is an optional argument
def forward(ctx, input):
ctx.save_for_backward(input)
return gelu_fwd(input)
@staticmethod
def backward(ctx, grad_output):
(input,) = ctx.saved_tensors
tmp = gelu_bwd(grad_output, input)
return tmp
fast_gelu_impl = FastGeLUFunction.apply
@torch.jit.script
def relu_bwd(g, x):
return torch.where(x >= 0, g, 0.0).to(dtype=x.dtype)
@torch.jit.script
def sqrelu_fwd(x):
r = F.relu(x)
return (r * r).to(dtype=x.dtype)
@torch.jit.script
def sqrelu_bwd(g, x):
return (2.0 * g * F.relu(x)).to(dtype=x.dtype)
class SquaredReLUFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
return sqrelu_fwd(input)
@staticmethod
def backward(ctx, grad_output):
input, = ctx.saved_tensors
return sqrelu_bwd(grad_output, input)
sqrelu = SquaredReLUFunction.apply
swiglu_fwd_codestring = """
template <typename T> T swiglu_fwd(T x, T y) {
return float(x) * float(y) / (1.0f + ::exp(-float(x)));
}
"""
swiglu_bwd_codestring = """
template <typename T> T swiglu_bwd(T x, T y, T g, T& dx, T& dy) {
float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x)));
dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y);
dy = float(x) * x_sigmoid * float(g);
}
"""
swiglu_bwd_with_output_codestring = """
template <typename T> T swiglu_bwd_with_output(T x, T y, T g, T& dx, T& dy, T& z) {
float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x)));
float x_swish = float(x) * x_sigmoid;
dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y);
dy = x_swish * float(g);
z = x_swish * float(y);
}
"""
swiglu_fwd = torch.cuda.jiterator._create_jit_fn(swiglu_fwd_codestring)
swiglu_bwd = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_codestring, num_outputs=2)
swiglu_bwd_with_output = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_with_output_codestring, num_outputs=3)
class SwiGLUFunction(torch.autograd.Function):
r"""
Swish-Gated Linear Unit (SwiGLU) function.
.. math::
\text{SwiGLU}(x, y) = swish(x) * y = \frac{x}{1 + \exp(-x)} * y
"""
@staticmethod
def forward(ctx, x, y):
ctx.save_for_backward(x, y)
return swiglu_fwd(x, y)
@staticmethod
def backward(ctx, dout):
x, y = ctx.saved_tensors
return swiglu_bwd(x, y, dout)
class SwiGLULinearFunction(torch.autograd.Function):
r"""
Swish-Gated Linear Unit (SwiGLU) function followed by a linear transformation.
.. math::
\text{SwiGLULinear}(x, y, W, b) = (swish(x) * y) W + b
This simple wrap discards the intermediate results of SwiGLU(x, y) to save memory.
"""
@staticmethod
@autocast_custom_fwd
def forward(ctx, x, y, weight, bias):
z = swiglu_fwd(x, y)
out = F.linear(z, weight, bias)
# We don't store z, will be recomputed in the backward pass to save memory
ctx.save_for_backward(x, y, weight)
ctx.linear_bias_is_none = bias is None
return out
@staticmethod
@autocast_custom_bwd
def backward(ctx, dout, *args):
x, y, weight = ctx.saved_tensors
dout = dout.reshape(-1, dout.shape[-1])
dz = F.linear(dout, weight.t()).view_as(x)
dx, dy, z = swiglu_bwd_with_output(x, y, dz)
dlinear_weight = torch.einsum("bo,bi->oi", dout, z.reshape(-1, z.shape[-1]))
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
return dx, dy, dlinear_weight, dlinear_bias
class SwiGLUBitLinearFunction(torch.autograd.Function):
r"""
Swish-Gated Linear Unit (SwiGLU) function followed by a linear transformation.
.. math::
\text{SwiGLULinear}(x, y, W, b) = (swish(x) * y) W + b
This simple wrap discards the intermediate results of SwiGLU(x, y) to save memory.
"""
@staticmethod
@autocast_custom_fwd
def forward(ctx, x, y, weight, bias):
z = swiglu_fwd(x, y)
out = fused_bitlinear.bit_linear(z, weight, bias)
# We don't store z, will be recomputed in the backward pass to save memory
ctx.save_for_backward(x, y, weight)
ctx.linear_bias_is_none = bias is None
return out
@staticmethod
@autocast_custom_bwd
def backward(ctx, dout, *args):
x, y, weight = ctx.saved_tensors
dout = dout.reshape(-1, dout.shape[-1])
dz = fused_bitlinear.bit_linear(dout, weight.t()).view_as(x)
dx, dy, z = swiglu_bwd_with_output(x, y, dz)
dlinear_weight = torch.einsum("bo,bi->oi", dout, z.reshape(-1, z.shape[-1]))
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
return dx, dy, dlinear_weight, dlinear_bias
swiglu = SwiGLUFunction.apply
swiglu_linear = SwiGLULinearFunction.apply
swiglu_bitlinear = SwiGLUBitLinearFunction.apply
ACT2FN = {
'relu': F.relu,
'sigmoid': sigmoid,
'logsigmoid': logsigmoid,
'silu': swish,
'swish': swish,
'sqrelu': sqrelu,
'gelu': fast_gelu_impl,
'bias_gelu': bias_gelu_impl,
}
|