File size: 4,732 Bytes
adeabb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# -*- coding: utf-8 -*-

import json
import logging
import os
import sys
import time

from transformers.trainer_callback import (ExportableState, TrainerCallback,
                                           TrainerControl, TrainerState)
from transformers.training_args import TrainingArguments


class LoggerHandler(logging.Handler):
    r"""
    Logger handler used in Web UI.
    """

    def __init__(self):
        super().__init__()
        self.log = ""

    def reset(self):
        self.log = ""

    def emit(self, record):
        if record.name == "httpx":
            return
        log_entry = self.format(record)
        self.log += log_entry
        self.log += "\n\n"


def get_logger(name: str) -> logging.Logger:
    r"""
    Gets a standard logger with a stream hander to stdout.
    """
    formatter = logging.Formatter(
        fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S"
    )
    handler = logging.StreamHandler(sys.stdout)
    handler.setFormatter(formatter)

    logger = logging.getLogger(name)
    logger.setLevel(logging.INFO)
    logger.addHandler(handler)

    return logger


def reset_logging() -> None:
    r"""
    Removes basic config of root logger. (unused in script)
    """
    root = logging.getLogger()
    list(map(root.removeHandler, root.handlers))
    list(map(root.removeFilter, root.filters))


logger = get_logger(__name__)

LOG_FILE_NAME = "trainer_log.jsonl"


class LogCallback(TrainerCallback, ExportableState):
    def __init__(self, start_time: float = None, elapsed_time: float = None):

        self.start_time = time.time() if start_time is None else start_time
        self.elapsed_time = 0 if elapsed_time is None else elapsed_time
        self.last_time = self.start_time

    def on_train_begin(
        self,
        args: TrainingArguments,
        state: TrainerState,
        control: TrainerControl,
        **kwargs
    ):
        r"""
        Event called at the beginning of training.
        """
        if state.is_local_process_zero:
            if not args.resume_from_checkpoint:
                self.start_time = time.time()
                self.elapsed_time = 0
            else:
                self.start_time = state.stateful_callbacks['LogCallback']['start_time']
                self.elapsed_time = state.stateful_callbacks['LogCallback']['elapsed_time']

        if args.save_on_each_node:
            if not state.is_local_process_zero:
                return
        else:
            if not state.is_world_process_zero:
                return

        self.last_time = time.time()
        if os.path.exists(os.path.join(args.output_dir, LOG_FILE_NAME)) and args.overwrite_output_dir:
            logger.warning("Previous log file in this folder will be deleted.")
            os.remove(os.path.join(args.output_dir, LOG_FILE_NAME))

    def on_log(
        self,
        args: TrainingArguments,
        state: TrainerState,
        control: TrainerControl,
        logs,
        **kwargs
    ):
        if args.save_on_each_node:
            if not state.is_local_process_zero:
                return
        else:
            if not state.is_world_process_zero:
                return

        self.elapsed_time += time.time() - self.last_time
        self.last_time = time.time()
        if 'num_input_tokens_seen' in logs:
            logs['num_tokens'] = logs.pop('num_input_tokens_seen')
            state.log_history[-1].pop('num_input_tokens_seen')
            throughput = logs['num_tokens'] / args.world_size / self.elapsed_time
            state.log_history[-1]['throughput'] = logs['throughput'] = throughput
        state.stateful_callbacks["LogCallback"] = self.state()

        logs = dict(
            current_steps=state.global_step,
            total_steps=state.max_steps,
            loss=state.log_history[-1].get("loss", None),
            eval_loss=state.log_history[-1].get("eval_loss", None),
            predict_loss=state.log_history[-1].get("predict_loss", None),
            learning_rate=state.log_history[-1].get("learning_rate", None),
            epoch=state.log_history[-1].get("epoch", None),
            percentage=round(state.global_step / state.max_steps * 100, 2) if state.max_steps != 0 else 100,
        )

        os.makedirs(args.output_dir, exist_ok=True)
        with open(os.path.join(args.output_dir, "trainer_log.jsonl"), "a", encoding="utf-8") as f:
            f.write(json.dumps(logs) + "\n")

    def state(self) -> dict:
        return {
            'start_time': self.start_time,
            'elapsed_time': self.elapsed_time
        }

    @classmethod
    def from_state(cls, state):
        return cls(state['start_time'], state['elapsed_time'])