File size: 4,732 Bytes
adeabb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# -*- coding: utf-8 -*-
import json
import logging
import os
import sys
import time
from transformers.trainer_callback import (ExportableState, TrainerCallback,
TrainerControl, TrainerState)
from transformers.training_args import TrainingArguments
class LoggerHandler(logging.Handler):
r"""
Logger handler used in Web UI.
"""
def __init__(self):
super().__init__()
self.log = ""
def reset(self):
self.log = ""
def emit(self, record):
if record.name == "httpx":
return
log_entry = self.format(record)
self.log += log_entry
self.log += "\n\n"
def get_logger(name: str) -> logging.Logger:
r"""
Gets a standard logger with a stream hander to stdout.
"""
formatter = logging.Formatter(
fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S"
)
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(formatter)
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
logger.addHandler(handler)
return logger
def reset_logging() -> None:
r"""
Removes basic config of root logger. (unused in script)
"""
root = logging.getLogger()
list(map(root.removeHandler, root.handlers))
list(map(root.removeFilter, root.filters))
logger = get_logger(__name__)
LOG_FILE_NAME = "trainer_log.jsonl"
class LogCallback(TrainerCallback, ExportableState):
def __init__(self, start_time: float = None, elapsed_time: float = None):
self.start_time = time.time() if start_time is None else start_time
self.elapsed_time = 0 if elapsed_time is None else elapsed_time
self.last_time = self.start_time
def on_train_begin(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
**kwargs
):
r"""
Event called at the beginning of training.
"""
if state.is_local_process_zero:
if not args.resume_from_checkpoint:
self.start_time = time.time()
self.elapsed_time = 0
else:
self.start_time = state.stateful_callbacks['LogCallback']['start_time']
self.elapsed_time = state.stateful_callbacks['LogCallback']['elapsed_time']
if args.save_on_each_node:
if not state.is_local_process_zero:
return
else:
if not state.is_world_process_zero:
return
self.last_time = time.time()
if os.path.exists(os.path.join(args.output_dir, LOG_FILE_NAME)) and args.overwrite_output_dir:
logger.warning("Previous log file in this folder will be deleted.")
os.remove(os.path.join(args.output_dir, LOG_FILE_NAME))
def on_log(
self,
args: TrainingArguments,
state: TrainerState,
control: TrainerControl,
logs,
**kwargs
):
if args.save_on_each_node:
if not state.is_local_process_zero:
return
else:
if not state.is_world_process_zero:
return
self.elapsed_time += time.time() - self.last_time
self.last_time = time.time()
if 'num_input_tokens_seen' in logs:
logs['num_tokens'] = logs.pop('num_input_tokens_seen')
state.log_history[-1].pop('num_input_tokens_seen')
throughput = logs['num_tokens'] / args.world_size / self.elapsed_time
state.log_history[-1]['throughput'] = logs['throughput'] = throughput
state.stateful_callbacks["LogCallback"] = self.state()
logs = dict(
current_steps=state.global_step,
total_steps=state.max_steps,
loss=state.log_history[-1].get("loss", None),
eval_loss=state.log_history[-1].get("eval_loss", None),
predict_loss=state.log_history[-1].get("predict_loss", None),
learning_rate=state.log_history[-1].get("learning_rate", None),
epoch=state.log_history[-1].get("epoch", None),
percentage=round(state.global_step / state.max_steps * 100, 2) if state.max_steps != 0 else 100,
)
os.makedirs(args.output_dir, exist_ok=True)
with open(os.path.join(args.output_dir, "trainer_log.jsonl"), "a", encoding="utf-8") as f:
f.write(json.dumps(logs) + "\n")
def state(self) -> dict:
return {
'start_time': self.start_time,
'elapsed_time': self.elapsed_time
}
@classmethod
def from_state(cls, state):
return cls(state['start_time'], state['elapsed_time'])
|