chore: adding an example from our template with a NeuralNetClassifier.
Browse files- README.md +44 -0
- compiled_model/client.zip +3 -0
- compiled_model/server.zip +3 -0
- compiled_model/versions.json +1 -0
- creating_models.py +74 -0
- handler.py +71 -0
- play_with_endpoint.py +115 -0
- requirements.txt +1 -0
README.md
CHANGED
@@ -1,3 +1,47 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
# Template for Concrete ML
|
6 |
+
|
7 |
+
Concrete ML is Zama's open-source privacy-preserving ML package, based on fully homomorphic encryption (FHE). We refer the reader to fhe.org or Zama's websites for more information on FHE.
|
8 |
+
|
9 |
+
This directory is used:
|
10 |
+
- by ML practicioners, to create Concrete ML FHE-friendly models, and make them available to HF users
|
11 |
+
- by companies, institutions or people to deploy those models over HF inference endpoints
|
12 |
+
- by developers, to use these entry points to make applications on privacy-preserving ML
|
13 |
+
|
14 |
+
## Creating models and making them available on HF
|
15 |
+
|
16 |
+
This is quite easy. Fork this template (maybe use this experimental tool https://huggingface.co/spaces/huggingface-projects/repo_duplicator for that), and then:
|
17 |
+
- install everything with: `pip install -r requirements.txt`
|
18 |
+
- edit `creating_models.py`, and fill the part between "# BEGIN: insert your ML task here" and
|
19 |
+
"# END: insert your ML task here"
|
20 |
+
- run the python file: `python creating_models.py`
|
21 |
+
|
22 |
+
At the end, if the script is successful, you'll have your compiled model ready in `compiled_model`. Now you can commit and push your repository (with in particular `compiled_model`, `handler.py`, `play_with_endpoint.py` and `requirements.txt`, but you can include the other files as well).
|
23 |
+
|
24 |
+
We recommend you to tag your Concrete ML compiled repository with `Concrete ML FHE friendly` tag, such that people can find them easily.
|
25 |
+
|
26 |
+
## Deploying a compiled model on HF inference endpoint
|
27 |
+
|
28 |
+
If you find an `Concrete ML FHE friendly` repository that you would like to deploy, it is very easy.
|
29 |
+
- click on 'Deploy' button in HF interface
|
30 |
+
- chose "Inference endpoints"
|
31 |
+
- chose the right model repository
|
32 |
+
- (the rest of the options are classical to HF end points; we refer you to their documentation for more information)
|
33 |
+
and then click on 'Create endpoint'
|
34 |
+
|
35 |
+
And now, your model should be deployed, after few secunds of installation.
|
36 |
+
|
37 |
+
## Using HF entry points on privacy-preserving models
|
38 |
+
|
39 |
+
Now, this is the final step: using the entry point. You should:
|
40 |
+
- if your inference endpoint is private, set an environment variable HF_TOKEN with your HF token
|
41 |
+
- edit `play_with_endpoint.py`
|
42 |
+
- replace `API_URL` by your entry point URL
|
43 |
+
- replace the part between "# BEGIN: replace this part with your privacy-preserving application" and
|
44 |
+
"# END: replace this part with your privacy-preserving application" with your application
|
45 |
+
|
46 |
+
Finally, you'll be able to launch your application with `python play_with_endpoint.py`.
|
47 |
+
|
compiled_model/client.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52473c839cbf2951945693fb255e48214c888e8e6ef513c3a06ccf866bc66aa4
|
3 |
+
size 3403
|
compiled_model/server.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:697fe8a7e1a6c5133dd29553c7f90457f4c2a388888051654e84d189d01fc9f4
|
3 |
+
size 1781
|
compiled_model/versions.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"concrete-python": "2.5.0rc1", "concrete-ml": "1.3.0", "python": "3.9.15"}
|
creating_models.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
import sys
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
from concrete.ml.deployment import FHEModelDev
|
6 |
+
from concrete.ml.deployment import FHEModelClient
|
7 |
+
|
8 |
+
|
9 |
+
def compile_and_make_it_deployable(model_dev, X_train):
|
10 |
+
|
11 |
+
path_to_model = Path("compiled_model")
|
12 |
+
|
13 |
+
# Compile into FHE
|
14 |
+
model_dev.compile(X_train)
|
15 |
+
|
16 |
+
# Saving the model
|
17 |
+
shutil.rmtree(path_to_model, ignore_errors=True)
|
18 |
+
fhemodel_dev = FHEModelDev(path_to_model, model_dev)
|
19 |
+
fhemodel_dev.save(via_mlir=True)
|
20 |
+
|
21 |
+
# To see the size of the key
|
22 |
+
fhemodel_client = FHEModelClient(path_to_model)
|
23 |
+
|
24 |
+
# Generate the keys
|
25 |
+
fhemodel_client.generate_private_and_evaluation_keys()
|
26 |
+
evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()
|
27 |
+
|
28 |
+
print(f"Your keys will be {sys.getsizeof(evaluation_keys) / 1024 / 1024}-megabytes long")
|
29 |
+
|
30 |
+
# Check accuracy with p_error
|
31 |
+
y_pred_simulated = model_dev.predict(X_test, fhe="simulate")
|
32 |
+
simulated_accuracy = accuracy_score(Y_test, y_pred_simulated)
|
33 |
+
|
34 |
+
print(f"Concrete average precision score (simulate): {simulated_accuracy:0.2f}")
|
35 |
+
|
36 |
+
|
37 |
+
# BEGIN: insert your ML task here
|
38 |
+
# Typically
|
39 |
+
from concrete.ml.sklearn import NeuralNetClassifier
|
40 |
+
from sklearn.metrics import accuracy_score
|
41 |
+
from sklearn.model_selection import train_test_split
|
42 |
+
from sklearn.datasets import load_iris
|
43 |
+
from torch import nn
|
44 |
+
|
45 |
+
# Get iris data-set
|
46 |
+
X, y = load_iris(return_X_y=True)
|
47 |
+
|
48 |
+
# Split into train and test
|
49 |
+
X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.25, random_state=42)
|
50 |
+
|
51 |
+
# Scikit-Learn and Concrete ML neural networks only handle float32 input values
|
52 |
+
X_train, X_test = X_train.astype("float32"), X_test.astype("float32")
|
53 |
+
|
54 |
+
params = {
|
55 |
+
"module__n_layers": 3,
|
56 |
+
"module__activation_function": nn.ReLU,
|
57 |
+
"max_epochs": 1000,
|
58 |
+
"verbose": 0,
|
59 |
+
}
|
60 |
+
|
61 |
+
model_dev = NeuralNetClassifier(**params)
|
62 |
+
|
63 |
+
model_dev = model_dev.fit(X=X_train, y=Y_train)
|
64 |
+
|
65 |
+
# Evaluate the Concrete ML model in the clear
|
66 |
+
y_pred_simulated = model_dev.predict(X_test)
|
67 |
+
|
68 |
+
simulated_accuracy = accuracy_score(Y_test, y_pred_simulated)
|
69 |
+
print(f"The test accuracy of the trained Concrete ML simulated model is {simulated_accuracy:.2f}")
|
70 |
+
|
71 |
+
# END: insert your ML task here
|
72 |
+
|
73 |
+
compile_and_make_it_deployable(model_dev, X_train)
|
74 |
+
print("Your model is ready to be deployable.")
|
handler.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import numpy as np
|
3 |
+
from concrete.ml.deployment import FHEModelServer
|
4 |
+
|
5 |
+
|
6 |
+
def from_json(python_object):
|
7 |
+
if "__class__" in python_object:
|
8 |
+
return bytes(python_object["__value__"])
|
9 |
+
|
10 |
+
|
11 |
+
def to_json(python_object):
|
12 |
+
if isinstance(python_object, bytes):
|
13 |
+
return {"__class__": "bytes", "__value__": list(python_object)}
|
14 |
+
raise TypeError(repr(python_object) + " is not JSON serializable")
|
15 |
+
|
16 |
+
|
17 |
+
class EndpointHandler:
|
18 |
+
def __init__(self, path=""):
|
19 |
+
|
20 |
+
# For server
|
21 |
+
self.fhemodel_server = FHEModelServer(path + "/compiled_model")
|
22 |
+
|
23 |
+
# Simulate a database of keys
|
24 |
+
self.key_database = {}
|
25 |
+
|
26 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
27 |
+
"""
|
28 |
+
data args:
|
29 |
+
inputs (:obj: `str`)
|
30 |
+
date (:obj: `str`)
|
31 |
+
Return:
|
32 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
33 |
+
"""
|
34 |
+
|
35 |
+
# Get method
|
36 |
+
method = data.pop("method", data)
|
37 |
+
|
38 |
+
if method == "save_key":
|
39 |
+
|
40 |
+
# Get keys
|
41 |
+
evaluation_keys = from_json(data.pop("evaluation_keys", data))
|
42 |
+
|
43 |
+
uid = np.random.randint(2**32)
|
44 |
+
|
45 |
+
while uid in self.key_database.keys():
|
46 |
+
uid = np.random.randint(2**32)
|
47 |
+
|
48 |
+
self.key_database[uid] = evaluation_keys
|
49 |
+
|
50 |
+
return {"uid": uid}
|
51 |
+
|
52 |
+
elif method == "inference":
|
53 |
+
|
54 |
+
uid = data.pop("uid", data)
|
55 |
+
|
56 |
+
assert uid in self.key_database.keys(), f"{uid} not in DB, {self.key_database.keys()=}"
|
57 |
+
|
58 |
+
# Get inputs
|
59 |
+
encrypted_inputs = from_json(data.pop("encrypted_inputs", data))
|
60 |
+
|
61 |
+
# Find key in the database
|
62 |
+
evaluation_keys = self.key_database[uid]
|
63 |
+
|
64 |
+
# Run CML prediction
|
65 |
+
encrypted_prediction = self.fhemodel_server.run(encrypted_inputs, evaluation_keys)
|
66 |
+
|
67 |
+
return to_json(encrypted_prediction)
|
68 |
+
|
69 |
+
else:
|
70 |
+
|
71 |
+
return
|
play_with_endpoint.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import time
|
3 |
+
import os, sys
|
4 |
+
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from concrete.ml.deployment import FHEModelClient
|
8 |
+
|
9 |
+
import requests
|
10 |
+
|
11 |
+
|
12 |
+
def to_json(python_object):
|
13 |
+
if isinstance(python_object, bytes):
|
14 |
+
return {"__class__": "bytes", "__value__": list(python_object)}
|
15 |
+
raise TypeError(repr(python_object) + " is not JSON serializable")
|
16 |
+
|
17 |
+
|
18 |
+
def from_json(python_object):
|
19 |
+
if "__class__" in python_object:
|
20 |
+
return bytes(python_object["__value__"])
|
21 |
+
|
22 |
+
|
23 |
+
# TODO: put the right link `API_URL` for your entryp point
|
24 |
+
API_URL = "https://XXXXXXX.us-east-1.aws.endpoints.huggingface.cloud"
|
25 |
+
headers = {
|
26 |
+
"Authorization": "Bearer " + os.environ.get("HF_TOKEN"),
|
27 |
+
"Content-Type": "application/json",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
def query(payload):
|
32 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
33 |
+
|
34 |
+
if "error" in response:
|
35 |
+
assert False, f"Got an error: {response=}"
|
36 |
+
|
37 |
+
return response.json()
|
38 |
+
|
39 |
+
|
40 |
+
path_to_model = Path("compiled_model")
|
41 |
+
|
42 |
+
# BEGIN: replace this part with your privacy-preserving application
|
43 |
+
from sklearn.datasets import make_classification
|
44 |
+
from sklearn.model_selection import train_test_split
|
45 |
+
|
46 |
+
x, y = make_classification(n_samples=1000, class_sep=2, n_features=30, random_state=42)
|
47 |
+
_, X_test, _, Y_test = train_test_split(x, y, test_size=0.2, random_state=42)
|
48 |
+
|
49 |
+
# Recover parameters for client side
|
50 |
+
fhemodel_client = FHEModelClient(path_to_model)
|
51 |
+
|
52 |
+
# Generate the keys
|
53 |
+
fhemodel_client.generate_private_and_evaluation_keys()
|
54 |
+
evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()
|
55 |
+
|
56 |
+
# Save the key in the database
|
57 |
+
payload = {
|
58 |
+
"inputs": "fake",
|
59 |
+
"evaluation_keys": to_json(evaluation_keys),
|
60 |
+
"method": "save_key",
|
61 |
+
}
|
62 |
+
|
63 |
+
uid = query(payload)["uid"]
|
64 |
+
print(f"Storing the key in the database under {uid=}")
|
65 |
+
|
66 |
+
# Test the handler
|
67 |
+
nb_good = 0
|
68 |
+
nb_samples = len(X_test)
|
69 |
+
verbose = True
|
70 |
+
time_start = time.time()
|
71 |
+
duration = 0
|
72 |
+
is_first = True
|
73 |
+
|
74 |
+
for i in range(nb_samples):
|
75 |
+
|
76 |
+
# Quantize the input and encrypt it
|
77 |
+
encrypted_inputs = fhemodel_client.quantize_encrypt_serialize([X_test[i]])
|
78 |
+
|
79 |
+
# Prepare the payload
|
80 |
+
payload = {
|
81 |
+
"inputs": "fake",
|
82 |
+
"encrypted_inputs": to_json(encrypted_inputs),
|
83 |
+
"method": "inference",
|
84 |
+
"uid": uid,
|
85 |
+
}
|
86 |
+
|
87 |
+
if is_first:
|
88 |
+
print(f"Size of the payload: {sys.getsizeof(payload) / 1024} kilobytes")
|
89 |
+
is_first = False
|
90 |
+
|
91 |
+
# Run the inference on HF servers
|
92 |
+
duration -= time.time()
|
93 |
+
duration_inference = -time.time()
|
94 |
+
encrypted_prediction = query(payload)
|
95 |
+
duration += time.time()
|
96 |
+
duration_inference += time.time()
|
97 |
+
|
98 |
+
encrypted_prediction = from_json(encrypted_prediction)
|
99 |
+
|
100 |
+
# Decrypt the result and dequantize
|
101 |
+
prediction_proba = fhemodel_client.deserialize_decrypt_dequantize(encrypted_prediction)[0]
|
102 |
+
prediction = np.argmax(prediction_proba)
|
103 |
+
|
104 |
+
if verbose:
|
105 |
+
print(
|
106 |
+
f"for {i}-th input, {prediction=} with expected {Y_test[i]} in {duration_inference:.3f} seconds"
|
107 |
+
)
|
108 |
+
|
109 |
+
# Measure accuracy
|
110 |
+
nb_good += Y_test[i] == prediction
|
111 |
+
|
112 |
+
print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")
|
113 |
+
print(f"Total time: {time.time() - time_start:.3f} seconds")
|
114 |
+
print(f"Duration per inference: {duration / nb_samples:.3f} seconds")
|
115 |
+
# END: replace this part with your privacy-preserving application
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
concrete-ml==1.3.0
|