concrete-ml-encrypted-deeplearning / play_with_endpoint.py
binoua's picture
chore: adding a test with DL
8e8b1a3
raw
history blame
4.15 kB
import numpy as np
import time
import os, sys
from pathlib import Path
from concrete.ml.deployment import FHEModelClient
import requests
def to_json(python_object):
if isinstance(python_object, bytes):
return {"__class__": "bytes", "__value__": list(python_object)}
raise TypeError(repr(python_object) + " is not JSON serializable")
def from_json(python_object):
if "__class__" in python_object:
return bytes(python_object["__value__"])
API_URL = "https://ml79quhm2orc8dbo.eu-west-1.aws.endpoints.huggingface.cloud"
headers = {
"Authorization": "Bearer " + os.environ.get("HF_TOKEN"),
"Content-Type": "application/json",
}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
if "error" in response:
assert False, f"Got an error: {response=}"
return response.json()
path_to_model = Path("compiled_model")
# DL in FHE
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
X, y = load_digits(return_X_y=True)
X = np.expand_dims(X.reshape((-1, 8, 8)), 1)
_, X_test, _, Y_test = train_test_split(X, y, test_size=0.25, shuffle=True, random_state=42)
# Recover parameters for client side
fhemodel_client = FHEModelClient(path_to_model)
# Generate the keys
fhemodel_client.generate_private_and_evaluation_keys()
evaluation_keys = fhemodel_client.get_serialized_evaluation_keys()
# Save the key in the database
evaluation_keys_remaining = evaluation_keys[:]
uid = None
is_first = True
is_finished = False
i = 0
packet_size = 1024 * 1024 * 100
while not is_finished:
# Send by packets of 100M
if sys.getsizeof(evaluation_keys_remaining) > packet_size:
evaluation_keys_piece = evaluation_keys_remaining[:packet_size]
evaluation_keys_remaining = evaluation_keys_remaining[packet_size:]
else:
evaluation_keys_piece = evaluation_keys_remaining
is_finished = True
print(
f"Sending {i}-th piece of the key (remaining size is {sys.getsizeof(evaluation_keys_remaining) / 1024:.2f} kbytes)"
)
i += 1
if is_first:
is_first = False
payload = {
"inputs": "fake",
"evaluation_keys": to_json(evaluation_keys_piece),
"method": "save_key",
}
uid = query(payload)["uid"]
print(f"Storing the key in the database under {uid=}")
else:
payload = {
"inputs": "fake",
"evaluation_keys": to_json(evaluation_keys_piece),
"method": "append_key",
"uid": uid,
}
query(payload)
# Test the handler
nb_good = 0
nb_samples = 10 # len(X_test)
verbose = True
time_start = time.time()
duration = 0
is_first = True
for i in range(nb_samples):
# Quantize the input and encrypt it
encrypted_inputs = fhemodel_client.quantize_encrypt_serialize([X_test[i]])
# Prepare the payload
payload = {
"inputs": "fake",
"encrypted_inputs": to_json(encrypted_inputs),
"method": "inference",
"uid": uid,
}
if is_first:
print(f"Size of the payload: {sys.getsizeof(payload) / 1024:.2f} kilobytes")
is_first = False
# Run the inference on HF servers
duration -= time.time()
duration_inference = -time.time()
encrypted_prediction = query(payload)
duration += time.time()
duration_inference += time.time()
encrypted_prediction = from_json(encrypted_prediction)
# Decrypt the result and dequantize
prediction_proba = fhemodel_client.deserialize_decrypt_dequantize(encrypted_prediction)[0]
prediction = np.argmax(prediction_proba)
if verbose:
print(
f"for {i}-th input, {prediction=} with expected {Y_test[i]} in {duration_inference:.3f} seconds"
)
# Measure accuracy
nb_good += Y_test[i] == prediction
print(f"Accuracy on {nb_samples} samples is {nb_good * 1. / nb_samples}")
print(f"Total time: {time.time() - time_start:.3f} seconds")
print(f"Duration per inference: {duration / nb_samples:.3f} seconds")
# END: replace this part with your privacy-preserving application