File size: 5,879 Bytes
a045f04
b4a223c
 
 
a045f04
0da9f78
 
 
 
 
b4a223c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a045f04
 
0da9f78
a045f04
0da9f78
a045f04
0da9f78
a045f04
0da9f78
a045f04
0da9f78
a045f04
0da9f78
 
a045f04
0da9f78
a045f04
0da9f78
a045f04
0da9f78
 
 
 
 
 
 
 
 
 
 
 
 
 
a045f04
0da9f78
 
 
 
 
 
 
 
 
a045f04
0da9f78
a045f04
0da9f78
a045f04
0da9f78
a045f04
0da9f78
a045f04
0da9f78
 
a045f04
0da9f78
 
 
a045f04
0da9f78
 
a045f04
0da9f78
 
 
 
 
 
 
 
a045f04
0da9f78
 
 
a045f04
0da9f78
a045f04
b4a223c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- dpo
- rlhf
- trl
pipeline_tag: text-generation
model-index:
- name: Llama3-8B-SuperNova-Spectrum-Hermes-DPO
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 46.91
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 21.24
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 5.14
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.94
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 9.62
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 18.16
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO
      name: Open LLM Leaderboard
---

# Llama3-8B-SuperNova-Spectrum-Hermes-DPO

This model is a **DPO fine-tuned** version of my `DARE_TIES` merged Model [`yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties`](https://huggingface.co/yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties) on the [yuvraj17/chatml-OpenHermes2.5-dpo-binarized-alpha-2k](https://huggingface.co/datasets/yuvraj17/chatml-OpenHermes2.5-dpo-binarized-alpha-2k) dataset.

## DPO (Direct Preference Optimization):

Direct Preference Optimization (DPO) is a fine-tuning technique that focuses on aligning a model's responses with human preferences or ranking data without requiring reinforcement learning steps, like in RLHF. 

<figure>

  <img src="https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/kHcU5dkcSVqxEIWt_GRUB.png" width="1000" height="768">
  <figcaption> DPO vs RLHF <a href="//arxiv.org/abs/2305.18290">Reference</a> </figcaption>

</figure>

## Training:

- Trained on **1x A40s (48GB VRAM)** using the [HuggingFace TRL](https://huggingface.co/docs/trl/index).
- **QLoRA**(`4-bit precision`) for 1 epoch
  ```
  # LoRA configuration
  peft_config = LoraConfig(
      r=32,
      lora_alpha=16,
      lora_dropout=0.05,
      bias="none",
      task_type="CAUSAL_LM",
      target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
  )
  ```
### Training Params

The following hyperparameters were used during training:
- learning_rate: 5e-05
- beta=0.1
- num_devices: 1
- gradient_accumulation_steps: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1

### Training Time = **1:57:00** hours

### Weight & Biases Report

[Report-Link](https://api.wandb.ai/links/my-sft-team/d211juao)

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "yuvraj17/Llama3-8B-SuperNova-Spectrum-Hermes-DPO"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

## 🏆 Evaluation Scores

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_yuvraj17__Llama3-8B-SuperNova-Spectrum-Hermes-DPO)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |18.00|
|IFEval (0-Shot)    |46.91|
|BBH (3-Shot)       |21.24|
|MATH Lvl 5 (4-Shot)| 5.14|
|GPQA (0-shot)      | 6.94|
|MuSR (0-shot)      | 9.62|
|MMLU-PRO (5-shot)  |18.16|