yuvraj17 commited on
Commit
dc2ff9f
1 Parent(s): 880d6f8

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ llama-3-8b-spectrum-25.Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
37
+ llama-3-8b-spectrum-25.bf16.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
3
+ library_name: transformers
4
+ license: llama3
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ - spectrum finetuning
9
+ - Deepspeed MultiGPU
10
+ - autoquant
11
+ - gguf
12
+ model-index:
13
+ - name: Llama-3-8B-spectrum-25
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+
21
+ # Llama-3-8B-spectrum-25
22
+
23
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the [yuvraj17/finetune_alpaca_1K](https://huggingface.co/datasets/yuvraj17/finetune_alpaca_1K) dataset.
24
+ It achieves the following results on the evaluation set:
25
+ - Loss: 1.2791
26
+
27
+ ## Spectrum Fine-tuning:
28
+ I have used the **Spectrum Fine-tuning** method as described in [Eric Hartford et. al 2024](https://arxiv.org/abs/2406.06623), which selectively targets some ***t%*** of the model layers with the highest **Signal-to-Noise Ratio (SNR)**. By focusing on the most information-dense layers, this approach maximizes fine-tuning efficiency while minimizing compute resources.
29
+
30
+ **The key goal of Spectrum Fine-tuning is:** *minimize the memory footprint and accelerate LLM training without sacrificing performance.*
31
+
32
+ The 25% layer selection ensures minimal computational overhead for fine-tuning.
33
+
34
+ ## Training:
35
+ - Trained on **2x A40s (48GB VRAM each)** for over 1 hour using the **Axolotl**.
36
+
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0002
42
+ - train_batch_size: 4
43
+ - eval_batch_size: 4
44
+ - seed: 42
45
+ - distributed_type: multi-GPU
46
+ - num_devices: 2
47
+ - gradient_accumulation_steps: 4
48
+ - total_train_batch_size: 32
49
+ - total_eval_batch_size: 8
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: cosine
52
+ - lr_scheduler_warmup_steps: 100
53
+ - num_epochs: 2
54
+
55
+
56
+ ![Train/loss Curve Image](https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/eSBh0SmeGYYUfx9pKgMIv.png)
57
+
58
+ ![eval/loss Curve Image](https://cdn-uploads.huggingface.co/production/uploads/66137d95e8d2cda230ddcea6/xNslkLH1pKot7tzWtIiu9.png)
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Axolotl 0.4.1
64
+ - Transformers 4.44.2
65
+ - Pytorch 2.4.0+cu121
66
+ - Datasets 2.20.0
67
+ - Tokenizers 0.19.1
llama-3-8b-spectrum-25.Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ae792bae84df7b4dea2af9b840cc701d237affcdc82fb3d5c49bfabeff51135
3
+ size 4018918432
llama-3-8b-spectrum-25.bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06b867950170fd81e415110edb331489f05ec4a37a723effbf052773695b256f
3
+ size 16068891680